A Simple Discretization Scheme for Gain Matrix Conditioning

Dan L. O'Connor¹, Siang Lim², Shams Elnawawi²

[1] Control Consulting Inc., MT, United States [2] Burnaby Refinery, BC, Canada

August 8th 2022

UBC

Why we are here today

Motivation:

Classical matrix conditioning techniques are very time-consuming for large gain matrices in practice due to the need for iterative adjustments.

Our Solution:

A novel matrix conditioning technique that avoids iterations by discretizing the gain matrix.

Example of a moderately-sized gain matrix from the Burnaby Refinery.

Industrial Model Predictive Control

Model Prediction

(Where am I going?)

Future CV predictions

CV Steady-state predictions

Generated targets

CV/MV limits

Costs

LP Optimizer

(Where should I go?)

Current plant state

Current move plan

Previous predictions

Implement first step from move plan

- Industrial MPCs have 2 optimizers:
 - Steady-state optimizer for economics
 - Dynamic optimizer for move planning
- Our focus is on the steady-state optimizer (Linear Program, or LP)
- LP uses steady-state model data from system identification

Dynamic Optimizer

(How do I get there?)

Classifying 2x2 gain interactions

$$G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{array}{c} \text{CV1} \\ \text{CV2} \end{array}$$

RGA = $\frac{-}{1 - \left(\frac{G_{21} * G_{12}}{G_{14} * G_{22}}\right)}$

- The smallest possible gain interaction is 2×2 ٠
- Combinations of gain values will give different ٠ degrees of variable interaction
- Interaction in 2×2 submatrices can be quantified ٠ using RGA or SVD

• Problematic interactions arise when matrices are ill-conditioned, such that
$$\frac{G_{11}}{G_{12}} \approx \frac{G_{12}}{G_{12}}$$

that
$$\frac{G_{11}}{G_{21}} \approx \frac{G_{12}}{G_{22}}$$

Visualizing the LP solution

LP feasible region (grey) showing all possible solutions, with current solution in green.

- The LP calculates steady-state targets
 by solving a cost minimization problem
 subject to MV and CV limits
- We can visualize a 2x2 LP solution by plotting CV limits as functions of MV moves
- The feasible region shows the optimal solution at an intersection of constraints

LP solution for change – ill-conditioned

 $\Delta MV_1 = -10.0$ $\Delta MV_1 = +10.0$ $\Delta MV_2 = +10.0$ $\Delta MV_2 = +0.05$ CV1_Hi --- CV1_Lo --- CV2_Hi --- CV2_Lo --- CV1 Lo --- CV2 Hi --- CV2 Lo CV2 Hi Old CV1 Hi CV₂ high limit 10 8 dropped from 8 6 1.2 to 1.0 ΔMV_2 6 ΔMV_2 4 2 0 × × -5 10 -105 0 -10-5 0 5 ΔMV_1 ΔMV_1

Small perturbations to an ill-conditioned model can result in large solution changes and general LP instability.

How do we repair ill-conditioned submatrices?

Option 1: force collinearity

- Reduces degrees of freedom
- Only one CV constraint can be satisfied

Option 2: adjust gains to reduce RGA

- Creates a well-conditioned submatrix
- Both CVs can be adequately controlled

$$G = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6.1 & -1 \\ 0 & 7 & -1 \end{bmatrix} \begin{array}{c} \text{CV1} \\ \text{CV2} \\ \text{CV3} \end{array}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 6.1 \end{bmatrix} \begin{bmatrix} CV1 \\ CV2 \end{bmatrix}$$

10

MV1 MV2

$$\begin{bmatrix} 1 & 2 \\ 3 & 6.1 \end{bmatrix} \begin{array}{c} CV1 \\ CV2 \end{array}$$
RGA = 61
MV2 MV3
 $\begin{bmatrix} 6.1 & -1 \\ 7 & -1 \end{bmatrix} \begin{array}{c} CV2 \\ CV3 \end{array}$
RGA = 6.78

N // /O

MV1 MV2 $\begin{bmatrix} 1 & 2 \\ 3 & 6.1 \end{bmatrix}$ CV1 \downarrow CV2 \downarrow Adjust to 6.6, reduce RGA

$$\begin{bmatrix} 1 & 2 \\ 3 & 6.6 \end{bmatrix} \begin{bmatrix} CV1 \\ CV2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 6.6 \end{bmatrix} \begin{bmatrix} CV1 \\ CV2 \end{bmatrix}$$

MV2 MV3

RGA = 16.5

Fixing that submatrix breaks this one. Previously 6.78

MV2 MV3 $\begin{bmatrix} .6 & -1 \\ 7 & -1 \end{bmatrix} \begin{bmatrix} CV2 \\ CV3 \end{bmatrix}$ 6.6

MV2

RGA = 16.5

Fixing that submatrix breaks this one. Previously 6.78

Problem: Fixing one submatrix breaks another.

Traditional Solution: Keep iterating through all submatrices in a trial-and-error manner until all submatrices are repaired.

Why is the traditional conditioning approach difficult?

Moderately-sized gain matrix from the Burnaby Refinery. We would need to iteratively check a very large number of 2×2 submatrices.

UBC

Key Idea: Binning the gains

Motivation:

Making gain adjustments to iteratively 'repair' each submatrix is very time-consuming and tedious for large models.

UBC

Key Idea: Binning the gains

Motivation:

Making gain adjustments to iteratively 'repair' each submatrix is very time-consuming and tedious for large models.

Our Solution:

We present a novel binning technique for gain matrix conditioning that is achievable in just a single-pass without iterations.

Gain binning procedure

• Step 1: 'Normalize' gain matrix to [-1,1]

Gain binning procedure

- **Step 1:** 'Normalize' gain matrix to [-1,1]
- Step 2: Define an RGA_{max} threshold; generate grid of bin values

Gain binning procedure

- **Step 1:** 'Normalize' gain matrix to [-1,1]
- Step 2: Define an RGA_{max} threshold; generate grid of bin values
- Step 3: Adjust each 'normalized' gain to the nearest bin

Gain binning procedure

- **Step 1:** 'Normalize' gain matrix to [-1,1]
- Step 2: Define an RGA_{max} threshold; generate grid of bin values
- Step 3: Adjust each 'normalized' gain to the nearest bin
- Step 4: That's it.

Binning is done in one-pass. No iterations.

How?

Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

$$B_i = (1 - \text{RGA}_{\text{max}}^{-1})^i \cdot B_0$$

How?

Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

 $B_i = (1 - \mathrm{RGA}_{\mathrm{max}}^{-1})^i \cdot B_0$

Example:

 $RGA_{max} = 12$ is a reasonable choice in practice. $B_0 = 1$ (since scaled gains are in [-1,1]) $B_1 = (1 - 12^{-1})^1 = 0.9167$

How?

Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

 $B_i = (1 - \mathrm{RGA}_{\mathrm{max}}^{-1})^i \cdot B_0$

Example:

RGA_{max} = 12 is a reasonable choice in practice. $B_0 = 1$ (since scaled gains are in [-1,1]) $B_1 = (1 - 12^{-1})^1 = 0.9167$ $B_2 = (1 - 12^{-1})^2 = 0.8403$

How?

Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

 $B_i = (1 - \mathrm{RGA}_{\mathrm{max}}^{-1})^i \cdot B_0$

Example:

RGA_{max} = 12 is a reasonable choice in practice. $B_0 = 1$ (since scaled gains are in [-1,1]) $B_1 = (1 - 12^{-1})^1 = 0.9167$ $B_2 = (1 - 12^{-1})^2 = 0.8403$ $B_i = ...$

How?

Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

 $B_i = (1 - \mathrm{RGA}_{\mathrm{max}}^{-1})^i \cdot B_0$

Example:

RGA_{max} = 12 is a reasonable choice in practice. $B_0 = 1$ (since scaled gains are in [-1,1]) $B_1 = (1 - 12^{-1})^1 = 0.9167$ $B_2 = (1 - 12^{-1})^2 = 0.8403$ $B_i = ...$

APCpapers.github.io

Adjust absolute value of scaled gain to closest bin value while preserving signs.

APCpapers.github.io

Adjust absolute value of scaled gain to closest bin value while preserving signs.

For example...

 $G' = \begin{bmatrix} -1.000 & 0.6000\\ 1.000 & -0.7813 \end{bmatrix}$

APCpapers.github.io

Adjust absolute value of scaled gain to closest bin value while preserving signs.

APCpapers.github.io

Adjust absolute value of scaled gain to closest bin value while preserving signs.

The binned matrix contains discrete values generated in the binning grid, rather than continuous values on the number line.

Binning guarantees 2 desirable properties

Property 1: The maximum possible gain adjustment is bounded by RGA_{max}

Binning guarantees 2 desirable properties

Property 1: The maximum possible gain adjustment is bounded by RGA_{max}

- For $RGA_{max} = 12$, the maximum change is only 4.35%.
- The lower the RGA requirements, the higher the max possible change.

Binning guarantees 2 desirable properties

Property 1: The maximum possible gain adjustment is bounded by RGA_{max}

- For $RGA_{max} = 12$, the maximum change is only 4.35%.
- The lower the RGA requirements, the higher the max possible change.

Property 2: All non-collinear 2x2 submatrices are guaranteed to have $RGA \le RGA_{max}$

• One-pass formula. There is no iteration.

Case study: Debutanizer application

Debutanizer:

Separate C4- from C5+ hydrocarbons

Case study: Debutanizer application

Debutanizer:

Separate C4- from C5+ hydrocarbons

APC objective:

Use 5 blue MVs to control 8 red CVs.

Product specs

- C5% impurity in top stream
- RVP of bottom stream

Apply typical move scaling

Raw gain matrix source:

Simulated debutanizer data from CCI training classes

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
AI-RVP-PV	-0.1942	-0.0029	0.0711	0	0.0013
AI-DIST-C5	0.1843	-0.0288	-0.1907	0	0.0070
TOP-PCT	0.9220	-0.1477	-0.9458	0	0.0371
LI-ACCUM-PV	0.2042	0	-0.0667	-0.1485	0.0381
DP-DEBUT-PV	0.0774	0.0063	-0.0143	0	0.0064
PC-TOP-OP	4.9714	0.5000	-4.9887	0	0.3738
FC-REBOIL-OP	4.5005	0.3391	-1.4486	0	0.2725
FC-REFLUX-OP	0	0.2651	0	0	0

Raw gain matrix

Apply typical move scaling

UBC

Raw gain matrix source:

Simulated debutanizer data from CCI training classes

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
AI-RVP-PV	-0.1942	-0.0029	0.0711	0	0.0013
AI-DIST-C5	0.1843	-0.0288	-0.1907	0	0.0070
TOP-PCT	0.9220	-0.1477	-0.9458	0	0.0371
LI-ACCUM-PV	0.2042	0	-0.0667	-0.1485	0.0381
DP-DEBUT-PV	0.0774	0.0063	-0.0143	0	0.0064
PC-TOP-OP	4.9714	0.5000	-4.9887	0	0.3738
FC-REBOIL-OP	4.5005	0.3391	-1.4486	0	0.2725
FC-REFLUX-OP	0	0.2651	0	0	0

Raw gain matrix

Typical move scaling Gains are 'normalized' to [-1,1] by considering both MV move sizes and CV responses.

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
	$\Delta MV = 2$	$\Delta MV = 10$	$\Delta MV = 2$	$\Delta MV = 5$	$\Delta MV = 10$
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337
AI-DIST-C5	0.9666	-0.7552	$^{-1}$	0	0.1839
TOP-PCT	0.9748	-0.7807	$^{-1}$	0	0.1962
LI-ACCUM-PV	0.5500	0	-0.1797	$^{-1}$	0.5129
DP-DEBUT-PV	1	0.4049	-0.1848	0	0.4145
PC-TOP-OP	0.9965	0.5011	$^{-1}$	0	0.3747
FC-REBOIL-OP	1	0.3767	-0.3219	0	0.3027
FC-REFLUX-OP	0	1	0	0	0

Scaled gain matrix

Typical move scaling:

Apply typical move scaling

UBC

Raw gain matrix source:

Simulated debutanizer data from CCI training classes

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
AI-RVP-PV	-0.1942	-0.0029	0.0711	0	0.0013
AI-DIST-C5	0.1843	-0.0288	-0.1907	0	0.0070
TOP-PCT	0.9220	-0.1477	-0.9458	0	0.0371
LI-ACCUM-PV	0.2042	0	-0.0667	-0.1485	0.0381
DP-DEBUT-PV	0.0774	0.0063	-0.0143	0	0.0064
PC-TOP-OP	4.9714	0.5000	-4.9887	0	0.3738
FC-REBOIL-OP	4.5005	0.3391	-1.4486	0	0.2725
FC-REFLUX-OP	0	0.2651	0	0	0

Raw gain matrix

Typical move scaling:

 Multiply each MV column by the largest MV move size made during plant test

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
	$\Delta MV = 2$	$\Delta MV = 10$	$\Delta MV = 2$	$\Delta MV = 5$	$\Delta \mathrm{MV} = 10$
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337
AI-DIST-C5	0.9666	-0.7552	-1	0	0.1839
TOP-PCT	0.9748	-0.7807	-1	0	0.1962
LI-ACCUM-PV	0.5500	0	-0.1797	$^{-1}$	0.5129
DP-DEBUT-PV	1	0.4049	-0.1848	0	0.4145
PC-TOP-OP	0.9965	0.5011	$^{-1}$	0	0.3747
FC-REBOIL-OP	1	0.3767	-0.3219	0	0.3027
FC-REFLUX-OP	0	1	0	0	0

Scaled gain matrix

Apply typical move scaling

UBC

Raw gain matrix source:

Simulated debutanizer data from CCI training classes

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
AI-RVP-PV	-0.1942	-0.0029	0.0711	0	0.0013
AI-DIST-C5	0.1843	-0.0288	-0.1907	0	0.0070
TOP-PCT	0.9220	-0.1477	-0.9458	0	0.0371
LI-ACCUM-PV	0.2042	0	-0.0667	-0.1485	0.0381
DP-DEBUT-PV	0.0774	0.0063	-0.0143	0	0.0064
PC-TOP-OP	4.9714	0.5000	-4.9887	0	0.3738
FC-REBOIL-OP	4.5005	0.3391	-1.4486	0	0.2725
FC-REFLUX-OP	0	0.2651	0	0	0

Raw gain matrix

Typical move scaling:

- Multiply each MV column by the largest MV move size made during plant test
- Then, divide each CV row by the maximum abs gain in that row

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
	$\Delta MV = 2$	$\Delta MV = 10$	$\Delta MV = 2$	$\Delta MV = 5$	$\Delta MV = 10$
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337
AI-DIST-C5	0.9666	-0.7552	-1	0	0.1839
TOP-PCT	0.9748	-0.7807	-1	0	0.1962
LI-ACCUM-PV	0.5500	0	-0.1797	$^{-1}$	0.5129
DP-DEBUT-PV	1	0.4049	-0.1848	0	0.4145
PC-TOP-OP	0.9965	0.5011	$^{-1}$	0	0.3747
FC-REBOIL-OP	1	0.3767	-0.3219	0	0.3027
FC-REFLUX-OP	0	1	0	0	0

Scaled gain matrix

Check 2x2 matrix conditioning using RGA

Found 13 near-collinear 2x2 pairs:

Based on threshold for max RGA = 12

	MV1	MV2	CV1	$\mathrm{CV2}$	γ	RGA
1	FC-REFLUX-SP	FI-FEED-PV	PC-TOP-OP	FC-REBOIL-OP	59.14	14.36
2	TC-REBOIL-SP	FI-FEED-PV	DP-DEBUT-PV	PC-TOP-OP	59.99	10.75
3	TC-REBOIL-SP	PC-TOP-SP	AI-RVP-PV	LI-ACCUM-PV	67.50	9.26
4	TC-REBOIL-SP	FC-REFLUX-SP	DP-DEBUT-PV	FC-REBOIL-OP	81.83	14.37
5	FC-REFLUX-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	124.38	30.54
6	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	PC-TOP-OP	131.01	33.24
$\overline{7}$	TC-REBOIL-SP	FC-REFLUX-SP	AI-DIST-C5	TOP-PCT	165.64	40.79
8	PC-TOP-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	169.40	16.04
9	TC-REBOIL-SP	PC-TOP-SP	TOP-PCT	PC-TOP-OP	181.27	45.81
10	TC-REBOIL-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	189.76	18.39
11	FC-REFLUX-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	276.03	32.66
12	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	472.37	118.54
13	TC-REBOIL-SP	PC-TOP-SP	LI-ACCUM-PV	FC-REBOIL-OP	530.00	66.23

Near-collinear pairs

Check 2x2 matrix conditioning using RGA

Found 13 near-collinear 2x2 pairs:

Based on threshold for max RGA = 12

	MV1	MV2	CV1	$\mathrm{CV2}$	γ	RGA
1	FC-REFLUX-SP	FI-FEED-PV	PC-TOP-OP	FC-REBOIL-OP	59.14	14.36
2	TC-REBOIL-SP	FI-FEED-PV	DP-DEBUT-PV	PC-TOP-OP	59.99	10.75
3	TC-REBOIL-SP	PC-TOP-SP	AI-RVP-PV	LI-ACCUM-PV	67.50	9.26
4	TC-REBOIL-SP	FC-REFLUX-SP	DP-DEBUT-PV	FC-REBOIL-OP	81.83	14.37
5	FC-REFLUX-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	124.38	30.54
6	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	PC-TOP-OP	131.01	33.24
7	TC-REBOIL-SP	FC-REFLUX-SP	AI-DIST-C5	TOP-PCT	165.64	40.79
8	PC-TOP-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	169.40	16.04
9	TC-REBOIL-SP	PC-TOP-SP	TOP-PCT	PC-TOP-OP	181.27	45.81
10	TC-REBOIL-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	189.76	18.39
11	FC-REFLUX-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	276.03	32.66
12	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	472.37	118.54
13	TC-REBOIL-SP	PC-TOP-SP	LI-ACCUM-PV	FC-REBOIL-OP	530.00	66.23

Near-collinear pairs

Mark affected gains in blue squares

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV
	$\Delta MV = 2$	$\Delta MV = 10$	$\Delta MV = 2$	$\Delta MV = 5$	$\Delta \mathrm{MV} = 10$
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337
AI-DIST-C5	0.9666	-0.7552	-1	0	0.1839
TOP-PCT	0.9748	-0.7807	-1	0	0.1962
LI-ACCUM-PV	0.5500	0	-0.1797	-1	0.5129
DP-DEBUT-PV	1	0.4049	-0.1848	0	0.4145
PC-TOP-OP	0.9965	0.5011	-1	0	0.3747
FC-REBOIL-OP	1	0.3767	-0.3219	0	0.3027
FC-REFLUX-OP	0	1	0	0	0

Scaled gain matrix

Check 2x2 matrix conditioning using RGA

Found 13 near-collinear 2x2 pairs: Based on threshold for max RGA = 12

Fix near-collinear pairs using engineering judgement and domain/process knowledge:

- Could make them exactly collinear if we can't control both CVs.
- Assume that making them collinear is the correct approach for this debutanizer example.

Different for each process!

	MV1	MV2	CV1	$\mathrm{CV2}$	γ	RGA
1	FC-REFLUX-SP	FI-FEED-PV	PC-TOP-OP	FC-REBOIL-OP	59.14	14.36
2	TC-REBOIL-SP	FI-FEED-PV	DP-DEBUT-PV	PC-TOP-OP	59.99	10.75
3	TC-REBOIL-SP	PC-TOP-SP	AI-RVP-PV	LI-ACCUM-PV	67.50	9.26
4	TC-REBOIL-SP	FC-REFLUX-SP	DP-DEBUT-PV	FC-REBOIL-OP	81.83	14.37
5	FC-REFLUX-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	124.38	30.54
6	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	PC-TOP-OP	131.01	33.24
$\overline{7}$	TC-REBOIL-SP	FC-REFLUX-SP	AI-DIST-C5	TOP-PCT	165.64	40.79
8	PC-TOP-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	169.40	16.04
9	TC-REBOIL-SP	PC-TOP-SP	TOP-PCT	PC-TOP-OP	181.27	45.81
10	TC-REBOIL-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	189.76	18.39
11	FC-REFLUX-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT	276.03	32.66
12	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT	472.37	118.54
13	TC-REBOIL-SP	PC-TOP-SP	LI-ACCUM-PV	FC-REBOIL-OP	530.00	66.23

Near-collinear pairs

Mark affected gains in blue squares

	$\begin{array}{c} \text{TC-REBOIL-SP} \\ \Delta \text{MV} = 2 \end{array}$	FC-REFLUX-SP $\Delta MV = 10$	$\begin{array}{l} \text{PC-TOP-SP} \\ \Delta \text{MV} = 2 \end{array}$	$\begin{array}{l} \text{FC-DIST-SP} \\ \Delta \text{MV} = 5 \end{array}$	FI-FEED-PV $\Delta MV = 10$
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337
AI-DIST-C5	0.9666	-0.7552	-1	0	0.1839
TOP-PCT	0.9748	-0.7807	-1	0	0.1962
LI-ACCUM-PV	0.5500	0	-0.1797	$^{-1}$	0.5129
DP-DEBUT-PV	1 🗖	0.4049	-0.1848	0	0.4145
PC-TOP-OP	0.9965	0.5011	-1	0	0.3747
FC-REBOIL-OP	1 🗖	0.3767	-0.3219	0	0.3027
FC-REFLUX-OP	0	1	0	0	0

Scaled gain matrix

Scaled gain matrix 0.6000 0.78131.000Scaled, q'TC-REBOIL-SP FC-REFLUX-SP PC-TOP-SP FC-DIST-SP FI-FEED-PV $\Delta MV = 2$ $\Delta MV = 10$ $\Delta MV = 2$ $\Delta MV = 5$ $\Delta MV = 10$ 0.50.60.70.8 0.91.1 AI-RVP-PV $^{-1}$ -0.07540.36640.0337 0 AI-DIST-C5 -0.75520.1839 0.9666 -10 TOP-PCT 0.9748 -0.7807-10 0.1962 LI-ACCUM-PV 0.5500 -0.1797 $^{-1}$ 0.51290 0.59330.77031.000Binning DP-DEBUT-PV 1 0.4049 -0.18480 0.4145 0.3747 PC-TOP-OP 0.9965 0.5011 -10 Binned, \hat{q} 0.3767 -0.3219 0 FC-REBOIL-OP 1 0.3027 $B_7 B_6 B_5 B_4 B_3 B_2 B_1$ B_0 FC-REFLUX-OP 0 0 1 0 0

For each affected gain marked in blue, adjust to the closest absolute value bin in the grid (while preserving signs, e.g. adjust -0.6000 to -0.5933)

Results: Property 1 – gain adjustment % bounded

Binned gain matrix (gain adjustments in red)

	TC-REBOIL-SP	FC-REFLUX-SP	PC-TOP-SP	FC-DIST-SP	FI-FEED-PV		: \		5	RGA	-1 × 100%	, 1
AI-RVP-PV	-1	-0.0754	0.3664	0	0.0337	20			o_{\max}	$= \frac{1}{2 - RG}$	$\overline{A^{-1}} \times 100\%$	′ <u>–</u>
AI-DIST-C5	1 (3.46%)	-0.7703 (2.00%)	-1	0	0.1914 (4.08%)	(%)		$\mathbf{\lambda}$	(0.0.00	64.)		-
TOP-PCT	1 (2.59%)	-0.7703 (-1.34%)	-1	0	0.1914 (-2.41%)	×		- -	(6, 9.09)	%)		
LI-ACCUM-PV	0.5439 (-1.11%)	0	-0.1755 (-2.37%)	$^{-1}$	0.5129	u 10				((12, 4.35%)	-
DP-DEBUT-PV	1	0.4189 (3.46%)	-0.1848	0	0.4189 (1.06%)	~						-
PC-TOP-OP	1 (0.35%)	0.4985 (-0.52%)	-1	0	0.3840 (2.49%)	-						
FC-REBOIL-OP	1	0.3840 (1.93%)	-0.3227 (0.25%)	0	0.2958 (-2.30%)	0	-	1				
FC-REFLUX-OP	0	1	0	0	0	0		5	10		15	20
									RGA cl	noice		

Property 1: All gain adjustments are indeed less than 4.35%, for a max RGA requirement of 12.

Results: Property 2 – RGA thresholds satisfied

Created 10 new collinear pairs that were originally near-collinear pairs.

linear	Pair	MV1	MV2	CV1	CV2
inally	1	TC-REBOIL-SP	FC-REFLUX-SP	AI-DIST-C5	TOP-PCT
·	2	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT
pairs.	3	TC-REBOIL-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT
	4	FC-REFLUX-SP	PC-TOP-SP	AI-DIST-C5	TOP-PCT
	5	FC-REFLUX-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT
	6	PC-TOP-SP	FI-FEED-PV	AI-DIST-C5	TOP-PCT
	7	FC-REFLUX-SP	FI-FEED-PV	PC-TOP-OP	FC-REBOIL-OP
	8	TC-REBOIL-SP	PC-TOP-SP	LI-ACCUM-PV	FC-REBOIL-OP
	9	TC-REBOIL-SP	PC-TOP-SP	AI-DIST-C5	PC-TOP-OP
	10	TC-REBOIL-SP	PC-TOP-SP	TOP-PCT	PC-TOP-OP

Property 2: All non-collinear submatrices are now below RGA = 12.

Binning 'repaired' the gain matrix:

- Adjusted 13 near-collinear pairs into 10 collinear pairs (APC won't try to control those CV simultaneously)
- Adjusted the 3 remaining pairs to $RGA \le 12$ (APC won't make large MV moves)

Limitations and future work

• How can we enforce mass balance in this binning scheme?

Certain gains or gain combinations (ratios/sums etc.) must be locked to satisfy process mass balance and other physical constraints, how can we reconcile that during binning? *Work in progress, in collaboration with Nick Alsop at Borealis AG (Sweden)*

- How can we design better visualization tools for matrix conditioning? Can we do better than just coloring/marking gains of ill-conditioned pairs in the table?
- How can we extend binning to higher-order interactions? Can we also apply similar binning techniques for higher-order 3x3, 4x4 etc. submatrices?

Takeaways - Details see <u>APCpapers.github.io</u>

 Near-collinear submatrices can cause the LP optimizer to make undesirable, large MV moves or generate erratic steady-state targets.

Takeaways - Details see <u>APCpapers.github.io</u>

٠

Near-collinear submatrices can cause the LP optimizer to make undesirable, large MV moves or generate erratic steady-state targets.

 Collinearity repair using classical trial-and-error adjustments can be very time-consuming and tedious for large models.

Takeaways - Details see <u>APCpapers.github.io</u>

Near-collinear submatrices can cause the LP optimizer to make undesirable, large MV moves or generate erratic steady-state targets.

 Collinearity repair using classical trial-and-error adjustments can be very time-consuming and tedious for large models.

 We present a binning solution that will condition the matrix in a single pass to a user-defined RGA, with bounded gain % adjustments.

APPENDIX A: Additional Slides

Industrial Model Predictive Control (MPC)

- Base layer includes PIDs, regulatory control, etc.
- Advanced Process Control (APC) sits above base layer and has longer execution cycles
- PIDs have no view of other systems in the plant
- MPC adds predictive capability and economic optimization

Adapted from [1]: Strand, S. (n.d.). *MPC in Statoil*.
[2]: Ponton, J. (2007). *Module 3.1: Control of Distillation Columns*.
[3]: Why Vancouver desperately needs a new oil refinery. (2016, March 3). *Oil Sands Magazine*.

Typical MPC Workflow

 System ID relates inputs to outputs, and is used to obtain the steady-state (SS) gain matrix

- SS gain matrix is adjusted iteratively to meet control objectives using engineering judgment
 System ID results are not perfect.
 - System ID results are not perfect

Why is the traditional conditioning approach difficult?

Figure from Control Consulting, Inc.

[1]: Hall, R. S., Peterson, T. J., Pottorf, T. S., Punuru, A. R., & Vowell, L. E. (2008). Method for model gain matrix modification (Canada Patent No. CA2661478A1).

[2]: Ishikawa, A., Ohshima, M., & Tanigaki, M. (1997). A practical method of removing ill-conditioning in industrial constrained predictive control. Computers & Chemical Engineering, 21, S1093–S1098.

[3]: Zheng, Q., Harmse, M. J., Rasmussen, K. H., & Mcintyre, B. (2014). Methods and articles for detecting, verifying, and repairing matrix collinearity (Canada Patent No. CA2519783C).

Classifying 2x2 gain interactions

LP solution for change – well-conditioned

 $\Delta MV_1 = -0.25$ $\Delta MV_2 = +5.2$ $\Delta MV_1 = +0.1$ $\Delta MV_2 = +4.9$

 $\Delta MV_1 = -10.0$

LP solution for change – collinear

 $\Delta MV_1 = -10.0$ $\Delta MV_2 = +10.0$

LP solution for change – ill-conditioned

 $\Delta MV_1 = 0.0$ $\Delta MV_1 = +10.0$ $\Delta MV_2 = +5.0$ $\Delta MV_2 = +0.05$ CV1_Hi --- CV1_Lo --- CV2_Hi --- CV2_Lo --- CV1_Lo --- CV2_Hi --- CV2_Lo CV1_Hi 10 10 8 8 CV₂ high limit 5 5 dropped from 2 1.1 to 1.0 ΔMV_2 ΔMV_2 × × -7 -5 -5 -8 -8 -10 -7.5 -5.0 -2.5 -10 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 ΔMV_1 ΔMV_1

Consequences of ill-conditioning

- Moving CV/MV limits with a near-collinearity can cause excessive variable movement
- Difficult to understand when these are caused by near-collinearities specifically

How do we repair ill-conditioned submatrices?

Option 1: force collinearity

- Reduces degrees of freedom
- Only one CV constraint can be satisfied

Option 3: Zero out gain(s)

 If the gain direction is weak, perhaps control objectives can be achieved without it

Option 2: reduce RGA

- Creates a well-conditioned submatrix
- Both CVs can be adequately controlled

Option 4: ignore near-collinearity

- Perhaps large MV moves are fine for the control objectives
- Also possibly useful for unrealistic variable combinations