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Motivation: 
Classical matrix conditioning 
techniques are very time-consuming 
for large gain matrices in practice due 
to the need for iterative adjustments.

Our Solution: 
A novel matrix conditioning technique 
that avoids iterations by discretizing 
the gain matrix.

Why we are here today

Example of a moderately-sized gain matrix from the 
Burnaby Refinery.
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• Industrial MPCs have 2 optimizers:
o Steady-state optimizer for 

economics 
o Dynamic optimizer for move 

planning

• Our focus is on the steady-state 
optimizer (Linear Program, or LP)

• LP uses steady-state model data 
from system identification

Industrial Model Predictive Control

Ranade, S. M., & Torres, E. (2009). From dynamic mysterious control to dynamic manageable control. Hydrocarbon 
Processing, 88(3), 77-81.
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Classifying 2x2 gain interactions

• The smallest possible gain interaction is 2×2

• Combinations of gain values will give different 

degrees of variable interaction

• Interaction in 2×2 submatrices can be quantified 

using RGA or SVD 

• Problematic interactions arise when matrices are 

ill-conditioned, such that 
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• The LP calculates steady-state targets 

by solving a cost minimization problem 

subject to MV and CV limits

• We can visualize a 2x2 LP solution by 

plotting CV limits as functions of MV 

moves

• The feasible region shows the optimal 

solution at an intersection of constraints

Visualizing the LP solution

LP feasible region (grey) showing all possible 

solutions, with current solution in green.
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LP solution for change – ill-conditioned

ΔMV1 = -10.0
ΔMV2 = +10.0 ΔMV1 = +10.0

ΔMV2 = +0.05

CV2 high limit 
dropped from

1.2 to 1.0

Small perturbations to an ill-conditioned model can result in large solution changes and general LP 
instability.
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How do we repair ill-conditioned submatrices?
Option 1: force collinearity

• Reduces degrees of freedom
• Only one CV constraint can be satisfied

Option 2: adjust gains to reduce RGA

• Creates a well-conditioned submatrix
• Both CVs can be adequately controlled
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Traditional conditioning approach - example
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Traditional conditioning approach - example

1 2
3 6.1

MV1   MV2
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CV2
RGA = 61 

Adjust to 6.6, 
reduce RGA
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submatrix breaks 
this one. 
Previously 6.78
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Problem: Fixing one submatrix breaks another. 
Traditional Solution: Keep iterating through all submatrices 
in a trial-and-error manner until all submatrices are repaired.

RGA = 16.5 
Fixing that 
submatrix breaks 
this one. 
Previously 6.78
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Why is the traditional conditioning approach difficult?

Moderately-sized gain matrix from the Burnaby Refinery. We would need 
to iteratively check a very large number of 2×2 submatrices.
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Motivation: 
Making gain adjustments to iteratively ‘repair’ each 
submatrix is very time-consuming and tedious for 
large models.

Key Idea: Binning the gains

!""

!"#
!$%

…

!'(
!"" ⋯ !"(
⋮ ⋱ ⋮

!'" ⋯ !'(

APCpapers.github.io



18

Motivation: 
Making gain adjustments to iteratively ‘repair’ each 
submatrix is very time-consuming and tedious for 
large models. 

Our Solution: 
We present a novel binning technique for gain matrix 
conditioning that is achievable in just a single-pass 
without iterations.

Key Idea: Binning the gains
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• Step 1: ‘Normalize’ gain matrix to [-1,1]

Gain binning procedure APCpapers.github.io
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• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

Gain binning procedure APCpapers.github.io
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• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

• Step 3: Adjust each ‘normalized’ gain to the nearest bin

Gain binning procedure APCpapers.github.io
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• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

• Step 3: Adjust each ‘normalized’ gain to the nearest bin

• Step 4: That’s it. 
Binning is done in one-pass. No iterations.

Gain binning procedure APCpapers.github.io
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How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Generate grid of binned gains in [0,1] APCpapers.github.io
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How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example: 
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])

!- = 1 − 12,- - = 0.9167

Generate grid of binned gains in [0,1] APCpapers.github.io
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How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example: 
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])
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Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin APCpapers.github.io
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Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813

For example…
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Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813
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Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813

,! = −1.000 0.5933
1.000 −0.7703

Binning

The binned matrix contains discrete values generated in the binning grid, rather 
than continuous values on the number line.
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Property 1: The maximum possible gain adjustment is bounded by RGA$%&

Binning guarantees 2 desirable properties
APCpapers.github.io
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Property 1: The maximum possible gain adjustment is bounded by RGA$%&
• For RGA$%& = 12, the maximum change is only 4.35%.
• The lower the RGA requirements, the higher the max possible change.

Binning guarantees 2 desirable properties
APCpapers.github.io
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Property 1: The maximum possible gain adjustment is bounded by RGA$%&
• For RGA$%& = 12, the maximum change is only 4.35%.
• The lower the RGA requirements, the higher the max possible change.

Property 2: All non-collinear 2x2 submatrices are guaranteed to have RGA ≤ RGA$%&
• One-pass formula. There is no iteration.

Binning guarantees 2 desirable properties
APCpapers.github.io
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Debutanizer:
Separate C4- from C5+ hydrocarbons

Case study: Debutanizer application
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Debutanizer:
Separate C4- from C5+ hydrocarbons

APC objective:
Use 5 blue MVs to control 8 red CVs.

Product specs
• C5% impurity in top stream

• RVP of bottom stream

Case study: Debutanizer application
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Raw gain matrix source:
Simulated debutanizer data from 
CCI training classes

Apply typical move scaling

Raw gain matrix

APCpapers.github.io
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Raw gain matrix source:
Simulated debutanizer data from 
CCI training classes

Typical move scaling:

Apply typical move scaling

Raw gain matrix

Scaled gain matrix

APCpapers.github.io

Typical move scaling
Gains are ‘normalized’ to [-1,1] by 
considering both MV move sizes and 
CV responses.
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Raw gain matrix source:
Simulated debutanizer data from 
CCI training classes

Typical move scaling:
• Multiply each MV column by the 

largest MV move size made 
during plant test

Apply typical move scaling

Raw gain matrix

Scaled gain matrix
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Raw gain matrix source:
Simulated debutanizer data from 
CCI training classes

Typical move scaling:
• Multiply each MV column by the 

largest MV move size made 
during plant test

• Then, divide each CV row by the 
maximum abs gain in that row

Apply typical move scaling

Raw gain matrix

Scaled gain matrix

APCpapers.github.io
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Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Check 2x2 matrix conditioning using RGA

Near-collinear pairs
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Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Check 2x2 matrix conditioning using RGA

Mark affected gains in blue squares
Near-collinear pairs

Scaled gain matrix
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Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Fix near-collinear pairs using 
engineering judgement and 
domain/process knowledge:
• Could make them exactly collinear if 

we can’t control both CVs.
• Assume that making them collinear is 

the correct approach for this 
debutanizer example.
Different for each process!

Check 2x2 matrix conditioning using RGA

Mark affected gains in blue squares
Near-collinear pairs

Scaled gain matrix
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Generate binning grid, then adjust affected gains

Scaled gain matrix

For each affected gain marked in blue, adjust to the closest absolute value bin in the grid 
(while preserving signs, e.g. adjust -0.6000 to -0.5933)

Binning

APCpapers.github.io
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Results: Property 1 – gain adjustment % bounded

Binned gain matrix (gain adjustments in red)

Property 1: All gain adjustments are indeed less than 4.35%, for a max 
RGA requirement of 12.
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Results: Property 2 – RGA thresholds satisfied

Property 2: All non-collinear submatrices are now below RGA = 12.

Binning ‘repaired’ the gain matrix:
- Adjusted 13 near-collinear pairs into 10 collinear pairs (APC won’t try to control those 

CV simultaneously)
- Adjusted the 3 remaining pairs to RGA ≤ 12 (APC won’t make large MV moves)

Created 10 new collinear 
pairs that were originally 

near-collinear pairs.
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Limitations and future work

• How can we enforce mass balance in this binning scheme?
Certain gains or gain combinations (ratios/sums etc.) must be locked to satisfy process mass 
balance and other physical constraints, how can we reconcile that during binning?
Work in progress, in collaboration with Nick Alsop at Borealis AG (Sweden)

• How can we design better visualization tools for matrix conditioning?
Can we do better than just coloring/marking gains of ill-conditioned pairs in the table?

• How can we extend binning to higher-order interactions?
Can we also apply similar binning techniques for higher-order 3x3, 4x4 etc. submatrices?

APCpapers.github.io
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Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP 
optimizer to make undesirable, large MV moves or 
generate erratic steady-state targets.
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Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP 
optimizer to make undesirable, large MV moves or 
generate erratic steady-state targets.

• Collinearity repair using classical trial-and-error 
adjustments can be very time-consuming and 
tedious for large models.
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Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP 
optimizer to make undesirable, large MV moves or 
generate erratic steady-state targets.

• Collinearity repair using classical trial-and-error 
adjustments can be very time-consuming and 
tedious for large models.

• We present a binning solution that will condition the 
matrix in a single pass to a user-defined RGA, with 
bounded gain % adjustments.
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APPENDIX A: Additional Slides
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• Base layer includes PIDs, 
regulatory control, etc.

• Advanced Process Control (APC) 
sits above base layer and has 
longer execution cycles

• PIDs have no view of other 
systems in the plant

• MPC adds predictive capability 
and economic optimization

Industrial Model Predictive Control (MPC)

Adapted from [1]: Strand, S. (n.d.). MPC in Statoil.
[2]: Ponton, J. (2007). Module 3.1: Control of Distillation Columns. 
[3]: Why Vancouver desperately needs a new oil refinery. (2016, March 3). Oil Sands Magazine. 

APCpapers.github.io



54

Typical MPC Workflow

• System ID relates inputs to outputs, and is used 
to obtain the steady-state (SS) gain matrix

• SS gain matrix is adjusted iteratively to meet 
control objectives using engineering judgment

o System ID results are not perfect
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Why is the traditional conditioning approach difficult?

Figure from Control Consulting, Inc.
[1]: Hall, R. S., Peterson, T. J., Pottorf, T. S., Punuru, A. R., & Vowell, L. E. (2008). Method for model gain matrix modification (Canada Patent No. CA2661478A1). 
[2]: Ishikawa, A., Ohshima, M., & Tanigaki, M. (1997). A practical method of removing ill-conditioning in industrial constrained predictive control. Computers & Chemical Engineering, 21, S1093–S1098.
[3]: Zheng, Q., Harmse, M. J., Rasmussen, K. H., & Mcintyre, B. (2014). Methods and articles for detecting, verifying, and repairing matrix collinearity (Canada Patent No. CA2519783C).
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Classifying 2x2 gain interactions

RGA < RGAT (threshold) RGA → ∞ RGA > RGAT

Properly conditioned Perfectly collinear Ill-conditioned
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LP solution for change – well-conditioned

ΔMV1 = -0.25
ΔMV2 = +5.2

CV2 high limit 
dropped from

1.1 to 1.0

ΔMV1 = +0.1
ΔMV2 = +4.9
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LP solution for change – collinear

ΔMV1 = -10.0
ΔMV2 = +10.0

ΔMV1 = -10.0
ΔMV2 = +9.7

CV2 high limit 
dropped from

1.1 to 1.0
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LP solution for change – ill-conditioned

ΔMV1 = 0.0
ΔMV2 = +5.0

ΔMV1 = +10.0
ΔMV2 = +0.05

CV2 high limit 
dropped from

1.1 to 1.0
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Consequences of ill-conditioning
• Moving CV/MV limits with a near-collinearity 

can cause excessive variable movement

• Difficult to understand when these are caused 
by near-collinearities specifically
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How do we repair ill-conditioned submatrices?

Option 1: force collinearity

• Reduces degrees of freedom
• Only one CV constraint can be satisfied

Option 2: reduce RGA

• Creates a well-conditioned submatrix
• Both CVs can be adequately controlled

Option 3: Zero out gain(s)

• If the gain direction is weak, perhaps 
control objectives can be achieved 
without it

Option 4: ignore near-collinearity

• Perhaps large MV moves are fine for the 
control objectives

• Also possibly useful for unrealistic variable 
combinations 
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