
Dan L. O’Connor1, Siang Lim2, Shams Elnawawi2

[1] Control Consulting Inc., MT, United States
[2] Burnaby Refinery, BC, Canada

August 8th 2022

A Simple Discretization
Scheme for Gain Matrix
Conditioning

APCPapers.github.io

2

Motivation:
Classical matrix conditioning
techniques are very time-consuming
for large gain matrices in practice due
to the need for iterative adjustments.

Our Solution:
A novel matrix conditioning technique
that avoids iterations by discretizing
the gain matrix.

Why we are here today

Example of a moderately-sized gain matrix from the
Burnaby Refinery.

APCpapers.github.io

3

• Industrial MPCs have 2 optimizers:
o Steady-state optimizer for

economics
o Dynamic optimizer for move

planning

• Our focus is on the steady-state
optimizer (Linear Program, or LP)

• LP uses steady-state model data
from system identification

Industrial Model Predictive Control

Ranade, S. M., & Torres, E. (2009). From dynamic mysterious control to dynamic manageable control. Hydrocarbon
Processing, 88(3), 77-81.

APCpapers.github.io

4

Classifying 2x2 gain interactions

• The smallest possible gain interaction is 2×2

• Combinations of gain values will give different

degrees of variable interaction

• Interaction in 2×2 submatrices can be quantified

using RGA or SVD

• Problematic interactions arise when matrices are

ill-conditioned, such that
#$$
#%$

≈ #$%
#%%

' = ')) ')*
'*) '**

MV1 MV2

CV1

CV2

RGA =
)

)+ ,%$ ∗ ,$%
,$$ ∗ ,%%

APCpapers.github.io

5

• The LP calculates steady-state targets

by solving a cost minimization problem

subject to MV and CV limits

• We can visualize a 2x2 LP solution by

plotting CV limits as functions of MV

moves

• The feasible region shows the optimal

solution at an intersection of constraints

Visualizing the LP solution

LP feasible region (grey) showing all possible

solutions, with current solution in green.

APCpapers.github.io

6

LP solution for change – ill-conditioned

ΔMV1 = -10.0
ΔMV2 = +10.0 ΔMV1 = +10.0

ΔMV2 = +0.05

CV2 high limit
dropped from

1.2 to 1.0

Small perturbations to an ill-conditioned model can result in large solution changes and general LP
instability.

APCpapers.github.io

7

How do we repair ill-conditioned submatrices?
Option 1: force collinearity

• Reduces degrees of freedom
• Only one CV constraint can be satisfied

Option 2: adjust gains to reduce RGA

• Creates a well-conditioned submatrix
• Both CVs can be adequately controlled

APCpapers.github.io

8

Traditional conditioning approach - example

! =
1 2 0
3 6.1 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

APCpapers.github.io

9

! =
1 2 0
3 6.1 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example
APCpapers.github.io

10

! =
1 2 0
3 6.1 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example

1 2
3 6.1

MV1 MV2
CV1

CV2
RGA = 61

APCpapers.github.io

11

! =
1 2 0
3 6.1 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example

1 2
3 6.1

MV1 MV2
CV1

CV2
RGA = 61

RGA = 6.78 6.1 −1
7 −1

MV2 MV3
CV2

CV3

APCpapers.github.io

12

! =
1 2 0
3 6.1 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example

1 2
3 6.1

MV1 MV2
CV1

CV2
RGA = 61

Adjust to 6.6,
reduce RGA

APCpapers.github.io

13

! =
1 2 0
3 6.6 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

1 2
3 6.6

MV1 MV2
CV1

CV2

Traditional conditioning approach - example

RGA = 11

APCpapers.github.io

14

! =
1 2 0
3 6.6 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example

1 2
3 6.6

MV1 MV2
CV1

CV2
RGA = 11

RGA = 16.5
6.6 −1
7 −1

MV2 MV3
CV2

CV3

Fixing that
submatrix breaks
this one.
Previously 6.78

APCpapers.github.io

15

! =
1 2 0
3 6.6 −1
0 7 −1

MV1 MV2 MV3
CV1

CV2

CV3

Traditional conditioning approach - example

1 2
3 6.6

MV1 MV2
CV1

CV2
RGA = 11

6.6 −1
7 −1

MV2 MV3
CV2

CV3

APCpapers.github.io

Problem: Fixing one submatrix breaks another.
Traditional Solution: Keep iterating through all submatrices
in a trial-and-error manner until all submatrices are repaired.

RGA = 16.5
Fixing that
submatrix breaks
this one.
Previously 6.78

16

Why is the traditional conditioning approach difficult?

Moderately-sized gain matrix from the Burnaby Refinery. We would need
to iteratively check a very large number of 2×2 submatrices.

APCpapers.github.io

17

Motivation:
Making gain adjustments to iteratively ‘repair’ each
submatrix is very time-consuming and tedious for
large models.

Key Idea: Binning the gains

!""

!"#
!$%

…

!'(
!"" ⋯ !"(
⋮ ⋱ ⋮

!'" ⋯ !'(

APCpapers.github.io

18

Motivation:
Making gain adjustments to iteratively ‘repair’ each
submatrix is very time-consuming and tedious for
large models.

Our Solution:
We present a novel binning technique for gain matrix
conditioning that is achievable in just a single-pass
without iterations.

Key Idea: Binning the gains

!"" ⋯ !"$
⋮ ⋱ ⋮

!'" ⋯ !'$

!""

!"(
!)*

…

!'$

APCpapers.github.io

19

• Step 1: ‘Normalize’ gain matrix to [-1,1]

Gain binning procedure APCpapers.github.io

20

• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

Gain binning procedure APCpapers.github.io

21

• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

• Step 3: Adjust each ‘normalized’ gain to the nearest bin

Gain binning procedure APCpapers.github.io

22

• Step 1: ‘Normalize’ gain matrix to [-1,1]

• Step 2: Define an RGA$%& threshold; generate grid of bin values

• Step 3: Adjust each ‘normalized’ gain to the nearest bin

• Step 4: That’s it.
Binning is done in one-pass. No iterations.

Gain binning procedure APCpapers.github.io

23

How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Generate grid of binned gains in [0,1] APCpapers.github.io

24

How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example:
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])

!- = 1 − 12,- - = 0.9167

Generate grid of binned gains in [0,1] APCpapers.github.io

25

How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example:
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])

!- = 1 − 12,- - = 0.9167
!G = 1 − 12,- G = 0.8403

Generate grid of binned gains in [0,1] APCpapers.github.io

26

How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example:
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])

!- = 1 − 12,- - = 0.9167
!G = 1 − 12,- G = 0.8403
!" = …

Generate grid of binned gains in [0,1] APCpapers.github.io

27

How?
Use binning equation, from rearranging the RGA definition (detailed derivation in paper)

!" = 1 − RGA)*+,- " ⋅ !/

Example:
RGA)*+ = 12 is a reasonable choice in practice. !/ = 1 (since	scaled	gains	are	in	[-1,1])

!- = 1 − 12,- - = 0.9167
!G = 1 − 12,- G = 0.8403
!" = …

Generate grid of binned gains in [0,1] APCpapers.github.io

28

Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin APCpapers.github.io

29

Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813

For example…

APCpapers.github.io

30

Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813

APCpapers.github.io

31

Adjust absolute value of scaled gain to closest bin value while preserving signs.

Adjust each scaled gain to the nearest bin

!′ = −1.000 0.6000
1.000 −0.7813

,! = −1.000 0.5933
1.000 −0.7703

Binning

The binned matrix contains discrete values generated in the binning grid, rather
than continuous values on the number line.

APCpapers.github.io

32

Property 1: The maximum possible gain adjustment is bounded by RGA$%&

Binning guarantees 2 desirable properties
APCpapers.github.io

33

Property 1: The maximum possible gain adjustment is bounded by RGA$%&
• For RGA$%& = 12, the maximum change is only 4.35%.
• The lower the RGA requirements, the higher the max possible change.

Binning guarantees 2 desirable properties
APCpapers.github.io

34

Property 1: The maximum possible gain adjustment is bounded by RGA$%&
• For RGA$%& = 12, the maximum change is only 4.35%.
• The lower the RGA requirements, the higher the max possible change.

Property 2: All non-collinear 2x2 submatrices are guaranteed to have RGA ≤ RGA$%&
• One-pass formula. There is no iteration.

Binning guarantees 2 desirable properties
APCpapers.github.io

35

Debutanizer:
Separate C4- from C5+ hydrocarbons

Case study: Debutanizer application

D
is

til
la

tio
n

C
ol

um
n

Reflux
Drum

C4- Top Stream

C5+ Bottom Stream

Mixed
HC Feed

APCpapers.github.io

36

Debutanizer:
Separate C4- from C5+ hydrocarbons

APC objective:
Use 5 blue MVs to control 8 red CVs.

Product specs
• C5% impurity in top stream

• RVP of bottom stream

Case study: Debutanizer application

D
is

til
la

tio
n

C
ol

um
n

Reflux
Drum

C4- Top Stream

C5+ Bottom Stream

Mixed
HC Feed

APCpapers.github.io

37

Raw gain matrix source:
Simulated debutanizer data from
CCI training classes

Apply typical move scaling

Raw gain matrix

APCpapers.github.io

38

Raw gain matrix source:
Simulated debutanizer data from
CCI training classes

Typical move scaling:

Apply typical move scaling

Raw gain matrix

Scaled gain matrix

APCpapers.github.io

Typical move scaling
Gains are ‘normalized’ to [-1,1] by
considering both MV move sizes and
CV responses.

39

Raw gain matrix source:
Simulated debutanizer data from
CCI training classes

Typical move scaling:
• Multiply each MV column by the

largest MV move size made
during plant test

Apply typical move scaling

Raw gain matrix

Scaled gain matrix

APCpapers.github.io

40

Raw gain matrix source:
Simulated debutanizer data from
CCI training classes

Typical move scaling:
• Multiply each MV column by the

largest MV move size made
during plant test

• Then, divide each CV row by the
maximum abs gain in that row

Apply typical move scaling

Raw gain matrix

Scaled gain matrix

APCpapers.github.io

41

Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Check 2x2 matrix conditioning using RGA

Near-collinear pairs

APCpapers.github.io

42

Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Check 2x2 matrix conditioning using RGA

Mark affected gains in blue squares
Near-collinear pairs

Scaled gain matrix

APCpapers.github.io

43

Found 13 near-collinear 2x2 pairs:
Based on threshold for max RGA = 12

Fix near-collinear pairs using
engineering judgement and
domain/process knowledge:
• Could make them exactly collinear if

we can’t control both CVs.
• Assume that making them collinear is

the correct approach for this
debutanizer example.
Different for each process!

Check 2x2 matrix conditioning using RGA

Mark affected gains in blue squares
Near-collinear pairs

Scaled gain matrix

APCpapers.github.io

44

Generate binning grid, then adjust affected gains

Scaled gain matrix

For each affected gain marked in blue, adjust to the closest absolute value bin in the grid
(while preserving signs, e.g. adjust -0.6000 to -0.5933)

Binning

APCpapers.github.io

45

Results: Property 1 – gain adjustment % bounded

Binned gain matrix (gain adjustments in red)

Property 1: All gain adjustments are indeed less than 4.35%, for a max
RGA requirement of 12.

APCpapers.github.io

46

Results: Property 2 – RGA thresholds satisfied

Property 2: All non-collinear submatrices are now below RGA = 12.

Binning ‘repaired’ the gain matrix:
- Adjusted 13 near-collinear pairs into 10 collinear pairs (APC won’t try to control those

CV simultaneously)
- Adjusted the 3 remaining pairs to RGA ≤ 12 (APC won’t make large MV moves)

Created 10 new collinear
pairs that were originally

near-collinear pairs.

APCpapers.github.io

47

Limitations and future work

• How can we enforce mass balance in this binning scheme?
Certain gains or gain combinations (ratios/sums etc.) must be locked to satisfy process mass
balance and other physical constraints, how can we reconcile that during binning?
Work in progress, in collaboration with Nick Alsop at Borealis AG (Sweden)

• How can we design better visualization tools for matrix conditioning?
Can we do better than just coloring/marking gains of ill-conditioned pairs in the table?

• How can we extend binning to higher-order interactions?
Can we also apply similar binning techniques for higher-order 3x3, 4x4 etc. submatrices?

APCpapers.github.io

48

Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP
optimizer to make undesirable, large MV moves or
generate erratic steady-state targets.

APCpapers.github.io

49

Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP
optimizer to make undesirable, large MV moves or
generate erratic steady-state targets.

• Collinearity repair using classical trial-and-error
adjustments can be very time-consuming and
tedious for large models.

APCpapers.github.io

50

Takeaways - Details see APCpapers.github.io

• Near-collinear submatrices can cause the LP
optimizer to make undesirable, large MV moves or
generate erratic steady-state targets.

• Collinearity repair using classical trial-and-error
adjustments can be very time-consuming and
tedious for large models.

• We present a binning solution that will condition the
matrix in a single pass to a user-defined RGA, with
bounded gain % adjustments.

APCpapers.github.io

52

APPENDIX A: Additional Slides

APCpapers.github.io

53

• Base layer includes PIDs,
regulatory control, etc.

• Advanced Process Control (APC)
sits above base layer and has
longer execution cycles

• PIDs have no view of other
systems in the plant

• MPC adds predictive capability
and economic optimization

Industrial Model Predictive Control (MPC)

Adapted from [1]: Strand, S. (n.d.). MPC in Statoil.
[2]: Ponton, J. (2007). Module 3.1: Control of Distillation Columns.
[3]: Why Vancouver desperately needs a new oil refinery. (2016, March 3). Oil Sands Magazine.

APCpapers.github.io

54

Typical MPC Workflow

• System ID relates inputs to outputs, and is used
to obtain the steady-state (SS) gain matrix

• SS gain matrix is adjusted iteratively to meet
control objectives using engineering judgment

o System ID results are not perfect

APCpapers.github.io

55

Why is the traditional conditioning approach difficult?

Figure from Control Consulting, Inc.
[1]: Hall, R. S., Peterson, T. J., Pottorf, T. S., Punuru, A. R., & Vowell, L. E. (2008). Method for model gain matrix modification (Canada Patent No. CA2661478A1).
[2]: Ishikawa, A., Ohshima, M., & Tanigaki, M. (1997). A practical method of removing ill-conditioning in industrial constrained predictive control. Computers & Chemical Engineering, 21, S1093–S1098.
[3]: Zheng, Q., Harmse, M. J., Rasmussen, K. H., & Mcintyre, B. (2014). Methods and articles for detecting, verifying, and repairing matrix collinearity (Canada Patent No. CA2519783C).

APCpapers.github.io

56

Classifying 2x2 gain interactions

RGA < RGAT (threshold) RGA → ∞ RGA > RGAT

Properly conditioned Perfectly collinear Ill-conditioned

APCpapers.github.io

57

LP solution for change – well-conditioned

ΔMV1 = -0.25
ΔMV2 = +5.2

CV2 high limit
dropped from

1.1 to 1.0

ΔMV1 = +0.1
ΔMV2 = +4.9

APCpapers.github.io

58

LP solution for change – collinear

ΔMV1 = -10.0
ΔMV2 = +10.0

ΔMV1 = -10.0
ΔMV2 = +9.7

CV2 high limit
dropped from

1.1 to 1.0

APCpapers.github.io

59

LP solution for change – ill-conditioned

ΔMV1 = 0.0
ΔMV2 = +5.0

ΔMV1 = +10.0
ΔMV2 = +0.05

CV2 high limit
dropped from

1.1 to 1.0

APCpapers.github.io

60

Consequences of ill-conditioning
• Moving CV/MV limits with a near-collinearity

can cause excessive variable movement

• Difficult to understand when these are caused
by near-collinearities specifically

APCpapers.github.io

61

How do we repair ill-conditioned submatrices?

Option 1: force collinearity

• Reduces degrees of freedom
• Only one CV constraint can be satisfied

Option 2: reduce RGA

• Creates a well-conditioned submatrix
• Both CVs can be adequately controlled

Option 3: Zero out gain(s)

• If the gain direction is weak, perhaps
control objectives can be achieved
without it

Option 4: ignore near-collinearity

• Perhaps large MV moves are fine for the
control objectives

• Also possibly useful for unrealistic variable
combinations

APCpapers.github.io

