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Abstract

This paper describes the use of self-service analytics on time series process data for the troubleshooting and optimization of
refinery operations in the context of data visualization principles and best practices. Refining-relevant examples are used to demon-
strate how end-users can access real-time and historical process data and apply the following analytics operations across several
refining functions, including (1) incident troubleshooting – identifying periods of interest and methods available to investigate re-
lated plant data, patterns, events and disturbances leading up to the incident, and (2) data cleansing – filtering sensor data to remove
outliers and bad quality data, splicing and aligning data streams for more accurate analysis and to improve the confidence in the
outputs of subsequent analysis, such as the outputs of multivariate, regression-based system identification. The paper also provides
examples of how ad hoc analyses can be scaled up to plantwide analytics and evolve into routine, automated tasks. The importance
of analytic provenance and collaboration in sharing new insights from data is also discussed. To address the human factors associ-
ated with self-service analytics innovation, the paper concludes with lessons learnt, observations and adaptations compared to the
traditional “business-as-usual” approaches, best practices for data governance, and the implications for engineers that operate in a
safety-critical environment.
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1. Introduction

Before refinery operations and process performance can be
analysed, it must be measured. Nowadays, measured data is
transmitted, stored, and readily available for refinery engineers
to consume for real-time monitoring purposes and for basic
analysis tasks using tools such as spreadsheets or vendor-supplied
trending and charting tools. The analysis of refinery plant op-
erating and process data is a necessity for all refinery engi-
neers. However, conducting these analyses requires engineer-
ing knowledge and subject matter expertise that is not typi-
cally available from Information Technology (IT) departments
or data science functions.

The task of Plant Performance Analysis (PPA) is described
as using process measurements to develop models that are a
mathematical representation a plants performance [1], and re-
finery performance monitoring and control can generate increased
yields of higher margin products, increased capacity utiliza-
tion, increased margins, increased quality and optimized energy
costs etc. [2].

In addition to analysis of plant data for known, routine,
areas of opportunity, there is also a need for ad hoc analysis
of data for the troubleshooting of emerging operational issues
and process disturbances. Therefore, timely access to decision-
critical plant data and efficient analysis of the data can signifi-
cantly reduce the impact of deviations from expected plant be-
haviour with the potential to reduce the risk to plant, profit, per-
sonnel, environment, and surrounding communities. With the
prevalence of integrated datasets and increased data accessibil-

ity, the variety of analysis work is increasing with data science
applications that also consume plant data, introducing further
opportunities. Opportunity from an increased depth and variety
of analysis is therefore, helping to foster continuous improve-
ment in refinery performance and control.

Self-service analytics is an emerging form of data analysis
enabling engineers to perform a wider variety of modelling and
analysis tasks. Gartner defines self-service analytics as a form
of business intelligence where

“[...] line-of-business professionals are enabled and
encouraged to perform queries and generate reports
on their own, with nominal IT support.” [3]

Within the context of this paper and hydrocarbon process-
ing, the line-of business professionals are engineers. The types
of analysis performed by the engineers, with examples pre-
sented herein, are more complex than querying and report gen-
eration. Moreover, the principal types of data used in business
intelligence querying and reporting is relational and transac-
tional data, however, self-service analytics for plant operations
consumes near real-time, and historical sensor data. Therefore,
in hydrocarbon processing, the description of self-service ana-
lytics as a form of Business Intelligence is questionable and we
propose an alternative definition below:

“Self-Service Analytics (SSA) is the detailed ex-
amination of data, performed by subject matter ex-
perts and line-of-business professionals with little
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or no input required by Information Technology
functions. SSA tools offer ease of access to a vari-
ety of data sources and data streams, where the data
is analysed with easy-to-use methods and functions
to help solve problems and enhance human decision-
making.”

The usefulness of self-service analysis is determined by the
functions and methods available in the software tools that engi-
neers are equipped with, where spreadsheets are the most com-
mon tool. Spreadsheets are extremely accessible, require little
training to use and spreadsheets enable many kinds of analysis
to be performed on plant data. However, the use of spread-
sheets should be questioned where data has not been cleansed
or pre-analysed to remove bad-quality data, where datasets have
measurement gaps, are subject to measurement noise, or where
there is a need to remove data that would diminish the confi-
dence in the output of any analysis. Consider a refinery with
50,000 sensors, storing 50,000 measurements each minute for
the last five years: this refinery would generate 131 billion data
points for the five-year period.

Spreadsheets and relational-data based dashboard applica-
tions may also be challenged to handle the quantity of data re-
quired for some types of sensor derived, time series data anal-
ysis, especially considering the amount of data generated by
a refinery. Furthermore, self-service analytics often requires
functions and methods that are beyond the original design in-
tention of spreadsheet and dashboard applications such as,

• complex engineering calculations

• multi-variate based estimations and forecasts

• the generation of virtual sensors

• the cross referencing with plant events that have been de-
rived from disparate data sources

• data cleansing operations

• scenario testing

The timeliness and variety of analysis, the need to include
subject matter expertise, the quantity of data and the need to
cleanse the data using engineering knowledge, all support the
notion that self-service analytics will grow beyond the current
toolsets and will require a dedicated branch of computing tech-
niques.

In the literature, there are many competing definitions for
the terms ‘data’ and ‘information’. Rowley (2007) presented
a comprehensive survey on the data-information-knowledge-
wisdom (DIKW) model widely adopted in information science
[4]. According to Rowley, the term ‘data’ is often defined by
authors in terms of what it lacks; as a form of ‘raw facts’ ob-
tained from measurements and operations, data lacks mean-
ing and value without context. ‘Information’ is then defined
in terms of data, as a higher-order form of raw data that has
been formatted, processed or organized to impart meaning and
value. As summarized by Rowley, several authors further argue

that humans determine whether a message that they receive is
data or information, based on their prior experiences and ability
to assign meaning and significance to the message received.

The definitions of data, information, knowledge and wis-
dom have been a long-standing debate in many fields, and we do
not seek to review all competing definitions nor argue about the
semantics of higher-order structures like knowledge and wis-
dom. For the purposes of this paper, we subscribe to a sim-
ple understanding that information is a useful form of contex-
tualized data that can help engineers with sense-making and
decision-making. However, these basic distinctions are impor-
tant, because chemical process data is commonly characterized
as data rich but information poor [5]. In refining, big data is
not necessarily good data. Despite the large volumes of data
collected, extracting useful information from process historians
is a non-trivial task. Furthermore, in the context of refinery
process control, the plant is designed to operate at steady-state,
a condition which typically provides little to no useful infor-
mation for controller design, which is why step tests are often
needed to excite the plant prior to process modeling.

In this paper, we present three case studies from the Burn-
aby Refinery describing real-world challenges in process con-
trol applications and demonstrating how self-service analytics
could serve as an effective solution. Through these case studies,
we analyze the utility of self-service analytics tools vis-à-vis
classical methods by applying principles from the data visual-
ization and human-computer interaction (HCI) literature, and
explain how these tools could help translate raw data to value-
added information for refinery engineers. We report qualitative
feedback from practicing engineers on their experiences with
self-service analytics and discuss our perspectives on the bene-
fits and challenges of analytics and digital solutions in the con-
text of refinery engineering applications.

2. Literature Review

Chemical engineers have been asked to work with larger
and more complex datasets due to a proliferation of inexpensive
instrumentation and wider availability of data in recent years
[6]. However, chemical engineering education in general, has
not kept pace with the skills required to manipulate, visualize
and analyze these large datasets. Many chemical engineers of-
ten struggle with modern data-related tasks if their computing
skills are limited to classical methods, such as manual data ma-
nipulation in spreadsheets, or simple univariate visualization of
time series [6]. Likewise, several authors argued that the com-
putational needs of practicing engineers have now expanded be-
yond simple engineering calculations, and mastery of advanced
data manipulation skills is essential in the workplace [7, 8, 9].
Top-performing engineers are highly productive, motivated and
skilled in integrating messy, disparate data sources to uncover
engineering insights, and these engineers are functionally work-
ing as data scientists with deep engineering domain expertise
[10]. However, these digitally-savvy individuals with a com-
bination of strong domain knowledge, subject matter expertise
and understanding of computational tools are rare in an organi-
zation [11].
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Figure 1: Four types of data analytics from the Gartner analytics ascendancy
model [12] – descriptive, diagnostic, predictive and prescriptive, with increas-
ing value and execution difficulty, starting with basic data infrastructure needs
(data collection, storage, retrieval, cleaning, governance etc.) as the foundation
for all higher level tasks. In top half of the figure (A), the traditional approach
and challenges are illustrated in red, contrasted with the bottom half of the fig-
ure (B) where the self-service approach and its advantages are shown in green.

The Gartner analytics ascendancy model [12] describes four
major types of data analytics, corresponding to an organiza-
tion’s analytics maturity, as shown in Figure 1. Descriptive
analytics, which answers questions around ‘what happened’ in
hindsight, are commonly implemented as process trends, dash-
boards and KPIs (Key Performance Indicators). Diagnostic an-
alytics attempt to uncover root causes and provide insights on
why an event happened. Predictive analytics, such as forecast-
ing and simulations, involve making predictions of what will
happen in the future. In the process industries, predictive an-
alytics using machine learning techniques have been gaining
popularity in recent years [14]. Finally, prescriptive analytics
help stakeholders with decision-making and prescribe actions
to optimize the business. Each step provides increasingly valu-
able insights, but they are also progressively more difficult to
execute accurately.

Maslow (1943) introduced the concept of a hierarchy of hu-
man needs, where lower-level physiological needs including
food, water and shelter must first be satisfied, before higher-
level needs like self-actualization can be achieved [15]. Data
science practitioners and researchers have alluded to the idea of

a data hierarchy that mirrors Maslow’s insights [16, 17, 18, 19].
As illustrated in Figure 1, we can observe an increasing sophis-
tication of data analytics needs, forming a data-value analogy
of Maslow’s hierarchy, where the engineer’s basic data instruc-
ture and exploration needs must be adequately satisfied first,
before advanced analytics can be successfully executed.

We can further distinguish between a traditional approach to
refinery analytics and a self-service approach. The traditional
approach has several challenges – (1) low-value but essential
data preparation work must be done before value-added anal-
ysis can begin, (2) limited analysis functions are available to
Subject Matter Experts (SMEs), typically in the form of spread-
sheets, BI or visualization tools, (3) advanced analytics are per-
formed in external tools by skilled specialists, and may not be
directly integrated with lower-level analyses. The self-service
approach provides a solution to these issues by integrating mul-
tiple data sources and analysis types in a single, unified plat-
form that democratizes analytics to the wider organization. This
approach equips SMEs with a broader spectrum of analysis
functions, including those traditionally provided by IT func-
tions, data scientists and third-party specialist applications. A
self-service platform integrated with the process historian also
provides data scientists and specialists with a mechanism to
easily consume operational technology (OT) data using a no-
code/low-code approach for data preparation work, resulting in
a shorter time to value-added analysis for stakeholders.

An organization that is just starting their analytics journey
would likely have many low-hanging fruits at the descriptive
analytics and diagnostics analytics level that are yet to be ex-
ploited, potentially with significant business and productivity
impact. After all, how can one manage machine learning projects
effectively without the ability to easily access and visualize the
data to begin with? Furthermore, it has been documented in
the literature that the oil and gas sector is lagging behind many
other industries on the analytics maturity curve [20] and the
adoption of new technology [21].

Perrons et al. (2015) argued that the oil and gas industry,
in general, still treats data as facts describing the state of an as-
set, whereas leading digital industries, such as software compa-
nies, understand that the data itself is invaluable for identifying
complex patterns and hidden relationships [22]. This is a sub-
tle and interesting point that requires further elaboration. As
articulated by Perrons, the oil and gas industry generate mas-
sive datasets, many of which are only given a cursory glance,
and much of it are simply archived away unless needed for spe-
cific scenarios, such as reporting, operational monitoring or en-
gineering investigations. Leading digital organizations, how-
ever, understand that the value of big data analytics does not
arise by monitoring known relationships or testing hypotheses
on known variables. Rather, the true value lies in finding latent
patterns and making predictions on complex relationships that
were previously unknown, using the entirety of the organiza-
tion’s data, regardless of how disconnected and inconsequential
the data might seem when it was initially collected.

Marshall and colleagues [23] investigated the connection
between analytics and innovation in business organizations. Their
study shows that, not only are leading organizations capable of
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Figure 2: Engineers collaborate and interact with the underlying refinery data through visualization tools. As shown in the rightmost column by a representative
conversation during a collaborative troubleshooting effort, engineering investigative tasks typically employ iterative interrogation techniques, such as the 5-Whys
methodology, and rely on the engineer’s domain knowledge, reasoning skills and analytical capabilities. Moreover, refinery engineers often need to piece together
information from disparate data sources throughout the investigative process, and these tasks can be supported by an effective data analytics and visualization
platform to facilitate sensemaking and collaboration, with consideration of human factors [13].

extracting valuable information from different sources and per-
forming deep analysis to obtain competitive insights, but they
do so in a structured and targeted approach with 3 key strate-
gies. These leaders (1) promote excellent data quality and ac-
cessibility, (2) make innovation integral to every role by in-
vesting in their employees’ analytics training and (3) build a
quantitative innovation culture to effectively measure their suc-
cess. They also found that organizations struggling with ana-
lytics and innovation are typically more risk averse in nature,
and innovation, if any, happens only in isolated pockets in the
organization rather than in a strategic manner.

A 2015 article in Forbes noted that early adopters of tech-
nology are no longer common in the oil and gas industry, and
the expectation of innovation has weakened compared to the
industry’s early days [24]. Business leaders and engineers in
the oil and gas sector continue to accept the most basic of tools
and make do with outdated technology, instead of pursuing bet-
ter options and finding newer, more efficient ways of working.
The article asks, given the pioneering nature of the oil and gas
industry and its early innovations, ironically, why are these oil
and gas companies now resistant to innovation? How did this
‘spirit of modernization’ get lost? Roberts et al. (2021) dis-
cussed the implications of these trends in the oil and gas indus-
try and investigates the underlying reasons [21]. They identified
6 contributing factors, including, risk aversion, organizational
culture and other psychological factors, as illustrated in Figure
3. The authors describe the oil and gas sector as an industry
that exemplifies resistance to technological innovation, yet it is
also an industry that must innovate to remain competitive and
survive, which is indeed, an interesting paradox.

In the refining industry, driving innovation and gaining a

competitive engineering advantage through data analytics may
not necessarily involve complex models or cutting-edge ma-
chine learning techniques. Rather, having timely, high-quality
information is important to aid engineers and subject matter ex-
perts with decision making to achieve better business outcomes
such as increasing yields and reducing energy consumption.
Similar views have been held by other multinational oil and gas
companies [25], which we discuss later in this paper.

Engineering investigations are a routine analytics task for
engineers in the downstream refining industry, where domain
expertise is indispensable [14, 26]. These investigations involve
hypothesis development, sensemaking activities and narrative
building to construct a deep understanding of the process data;
it is an activity that goes beyond straightforward information vi-
sualization tasks like identifying trends and outliers [27]. These
investigative tasks are also cognitively challenging, requiring
engineers to make sense of a large collection of data that re-
lies heavily on their reasoning and analytical capabilities to find
root causes [28], based on insights from data visualization, as
illustrated by a representative troubleshooting conversation in
Figure 2.

Engineering investigative questions often involve visualiza-
tion of a conditional subset of large, multivariate time series
data when the plant is operating at certain states or conditions.
Several representative questions in a downstream refining con-
text are presented in Table 1, and classified using MacEachren’s
task descriptions [29, 30]. These conditional filters can be set
up using rudimentary SQL queries or Python scripts. However,
the typical refinery engineer with a chemical engineering back-
ground may not have the expertise to write these queries ef-
fectively, and may resort to performing the analysis in a more
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Figure 3: Corporate gatekeepers could either be facilitators or barriers to the
adoption of new technologies in an organisation. Roberts et al. (2021) explored
psychological factors influencing resistance to technological innovation in the
oil and gas industry and identified 6 overarching categories – personality, atti-
tudes, motivations, cognitive, organizational and social [21]. Gatekeepers and
decision makers who were overly risk averse and uncomfortable with new tech-
nology were described as dinosaurs.

familiar environment like spreadsheets, which would be very
inefficient, due to the laborious overhead of retrieving, loading
and cleaning the data first prior to performing any value-added
analysis. Furthermore, for data filtering tasks, separating the
data retrieval task from the data visualization task would im-
pose a heavy cognitive load on the user. Research has shown
that the most effective implementations of filtering are those
that immediately update the display, allowing users to quickly
see how the filters affect the data representation [31].

Clearly, without the right tools to facilitate data wrangling
and visualization, relatively simple tasks can be very tedious,
as engineers will need to write custom, potentially complex ad
hoc queries that may be beyond their expertise, or work with
cumbersome configurations and data manipulations, or worse
still, be dependent on someone else to query and clean data
for them [9] before any productive and value-added work can
begin. Any improvements to tools and methodologies at the de-
scriptive and diagnostic levels would be helpful for engineers
in their day-to-day tasks and lead to a competitive advantage,
even before resorting to more powerful machine learning or ad-
vanced analytics techniques.

To tackle these challenges, self-service analytics has the po-
tential to quickly empower engineers with a stronger ability to
work with data and take advantage of their existing domain ex-
pertise, without expensive and time-consuming data upskilling
programs, as well as alleviate the pressure and workload on
strained IT departments to support additional analytics duties
[9, 32].

Seeq Corporation’s software product is one example of a
self-service analytics system and is the SSA tool used to prepare
the case studies herein. In a recent ARC Advisory Group we-
binar, Shell shared their digital transformation roadmap, which
included self-service analytics solutions built in Seeq [25]. The
ARC Advisory Group listed the following key components of

Table 1: A taxonomy of event-based refinery engineering investigation ques-
tions based on MacEachren’s [29] temporal domain task descriptions, as pre-
sented by Aigner [30].

Type Representative Quote

Existence:
Did an event occur?

Did the alarm annunciate during the upset?

Temporal location:
When did an event occur?

When did we last operate at low tempera-
tures?

Temporal interval:
How long did an event last?

How long was last week’s process upset?

Temporal pattern:
How often does an event occur?

How often do we backflush the pump?

Rate of change:
How fast is the event data changing

When do we expect the tank to reach capac-
ity if we hold the current rates?

Sequence:
In what order do the events occur?

Did we see any changes in the unit before
the chloride concentration went up?

Synchronization:
Are the events co-occuring?

Was the control loop in manual during feed-
in?

Seeq in their ‘Industry Best Practice’ report on Shell’s SSA ap-
proach,

“Using a combination of monitoring and descrip-
tive, diagnostic, predictive, and prescriptive ana-
lytics, Seeq empowers users to determine what is
happening now, why it happened, what happened
in the past (and why), what will happen, and what
should happen. This is allowing Shell to move
from reactive to proactive operations.” [25]

In this paper, we consider the usage of Seeq for self-service
refinery analytics. Note that although Seeq is the tool used in
this paper, our focus is not on a usability study of Seeq, nor a
comparison of Seeq with other SSA tools, but rather a broader
discussion of SSA concepts demonstrated with refinery engi-
neering applications. We present three case studies from the
Burnaby Refinery to illustrate the utility and advantages of self-
service analytics compared to classical methods like spread-
sheets. Applications of refinery analytics are discussed in the
context of of data visualization principles and best practices
through a user-centered, event-based visualization framework
[30, 33].

3. Case Study 1: Conditional filtering of time series data

Our first case study illustrates how time series data filtering
and visualization can be effectively performed using a no-code
approach in self-service analytics tools.

Information visualization systems consist of two compo-
nents: representation and interaction. Representation is related
to how the data is rendered on the display, whereas interac-
tion involves a discourse between the user and the system to
query and explore the dataset in a goal-directed manner [34,
35]. These two components are not mutually exclusive, as user
interaction with a system may result in changes to its represen-
tation [36]. Zooming and filtering are interactions that reduce
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the complexity of the data representation by removing irrele-
vant information from the view [31]. Filtering can be achieved
by user-defined conditions and ranges, such that only a subset
of data satisfying the specified conditions are presented, and
zooming can be considered a form of filtering by navigation
[36].

Combine with set operators

2 events of interest

Name of combined event

Name of event

Condition of interest

Entity of interest

Composite Event: A AND B

Event Search: A Event Search: B

Figure 4: A visual event editor menu allows the user to quickly and easily
express conditional filters as well as composite events in an intuitive, visual
manner without writing code or textual queries.

Case Study 1: During a routine process audit, engineers at
the Burnaby Refinery discovered that a low-flow trip setpoint
on a compressor may be ineffective, and a higher trip set point
was recommended by the team for safety reasons. However,
the operations team raised concerns about the reliability of the
compressor’s flow meter readings, as they had observed spo-
radic dips in the measurements. A setpoint increase may lead
to spurious trips and production losses due to faulty flow mea-
surements. As part of their due diligence process, the engineer-
ing team wanted to identify time periods in the past 10 years
with measurement anomalies to determine exactly how often
these sporadic blips occur. The conditional filters of interest in-
cluded (1) feed rate exceeding a threshold, to indicate normal
operations, and (2) compressor air flow rates below a thresh-
old, to indicate measurement anomalies. In other words, in the

framework of event-based visualization [30], given a multivari-
ate time series x, we are interested in finding a subset of x such
that {x | (x.flow < ε1) ∩ (x.feed > ε2)}, where ε1 and ε2 are the
user-defined thresholds.

Challenges: The anomalies may last only a few seconds,
so high-resolution data from the process historian is needed for
the analysis. An attempt at performing the analysis in spread-
sheets was eventually determined to be infeasible due to the
large, cumbersome dataset. The high-resolution data retrieval
and conditional filtering formulas were time-consuming to con-
figure and execute, as the entire dataset needed to be retrieved
first and stored in the spreadsheet before the computations can
be performed. More performant in-database queries, such as
executing textual queries directly in the process historian were
considered, which would’ve avoided the need to load the en-
tire dataset into a spreadsheet first, but the team involved in
the analysis did not have the familiarity and expertise to cor-
rectly express the conditional filters as historian queries. Stud-
ies have shown that textual event specifications, such as his-
torian or SQL queries, are often intimidating to novice users
[33], and the usage of visual editors can help users express their
needs more easily, especially for defining complex, composite
events.

Solution: Using a visual editor, the team was able to rapidly
configure the conditional filters of interest using an intuitive
graphical interface as illustrated in Figure 4. These ‘conditions’
are also known as ‘event types’ in the framework of event-based
visualization [30]. A combination of event types can be chained
together using set operators (AND, OR, NOT etc.) or temporal
predicates (before, after, overlaps etc.) [33] to form com-
posite events in the visual editor. In Seeq, the subset of data that
matches the condition or event type is marked as a collection
of capsules at the top of the time series trends. Capsules are
encoded with different colors, representing periods of interest
defined by the user to add context to time series data. Capsules
can be considered a form of visual representation of an event
instance [33].

To drill down into the relevant data, a chain view feature
modifies the display window to hide a subset of data that do
not match the conditional filters and isolate the time periods of
interest, as shown in Figure 5. This chain view concept aligns
with Shneiderman’s widely-held data visualization principle or
information-seeking mantra of “overview first, zoom and filter,
then details on demand” [37] and is recognized to be effective
for managing visualization needs for large, complex datasets.
The built-in capsule summary table in Seeq further provides a
count for exactly how many times these measurement anoma-
lies occurred in the past 10 years.

Results: Using these new insights, and comparing it to the
trip logic in the DCS (Distributed Control System), the engi-
neering team was able to verify that the new setpoints would
have a low risk of spurious trips due to redundancy in the flow
measurements and the existing logic configuration. This exer-
cise increased confidence in proceeding with the setpoint change
to improve process safety. In contrast with a classical spreadsheet-
based method, which took several engineers at least 40 hours
performing low-value work such as tweaking historian settings,
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Time interval matching
event conditions marked

as capsules

Chain View isolates capsules
and hides non-event data

Figure 5: Shneiderman’s information-seeking mantra of ‘overview first, then
zoom and filter’ implemented as a chain view feature in visualization tools.
Chain view stitches together subsets of the data that matches the active con-
ditional filters to reduce visual noise and clutter. By hiding irrelevant data,
visualization tools can help isolate time periods of interest for the user, allow-
ing users to drill down and observe relevant capsules for deeper insights.

waiting for data retrieval, and manually inspecting spreadsheet
calculations, without much confidence in the final results, the
visual interface allowed the team to rapidly and efficiently ob-
tain the right answers in less than an hour using an intuitive vi-
sual editor for specifying complex events and querying a large
dataset in a no-code manner.

4. Case Study 2: Inferential performance assessment

Our second case study illustrates how self-service analytics
can be used for time series data cleaning and computations with
a low-code approach in the context of inferential performance
assessment. Inferentials are also known as soft sensors, and are
widely used in the refining industry to estimate process qual-
ity variables such as product compositions and boiling points in
the absence of expensive online measurements. The true values
are measured offline using lab equipment, which offers a lim-
ited number of samples with significant time delay, typically
in the order of hours or even days. These lab values are then
used to bias or correct the inferential model predictions, using a
technique typically referred to as sensor fusion in the literature
[38].

Case Study 2: Due to operational, equipment or process
changes, inferential accuracy will degrade over time and pe-
riodic model updates are needed to maintain its performance
[39]. A common method of measuring inferential performance
is the usage of residual-based KPIs, where the inferential pre-
dictions are compared to the ‘true’ lab values. Due to the time
delay in obtaining lab values, the ‘true’ lab value in the residual
calculations must be compared with the inferential prediction
at the sampling time, and not the time when the lab results are
available [39, 40]. In other words, we wish to compute the ab-
solute residual, ei = |ŷi − y j| where y is the lab value sampled
at time index ti with results obtained at a later time, t j, and ŷ
is the prediction at time index ti. Due to the time delay, the

lab sample collected at ti will not have results available until a
later time index j > i, typically in the order of hours or days, as
shown in Figure 6.

Challenges: At the Burnaby Refinery, the DCS logic for
inferentials is configured such that an indicator signal, 1A is set
to 1 when A is true, where A is the event that a sample is taken
but the lab results are unavailable yet, and 0 otherwise. Due to
the time delay between the sample and results as described ear-
lier, there is a need to track the sampling time and align the time
stamps of the lab results with the inferential predictions for cor-
rect computation of the residuals. This can be achieved shifting
the irregularly sampled y backwards based on the indicator sig-
nal, 1A. An early attempt to setup the residual calculation as
a textual historian query or manually in spreadsheets proved to
be too cumbersome and tedious to align the timestamps.

Solutions: Converting the indicator signals to capsules is
the first step in using self-service analytics for this case study.
The start of the capsule at time index i would correspond to the
prediction ŷ and the end of the capsule at time index j would
correspond to the lab results y collected at time i. The correct
residual calculation is then simply the absolute difference be-
tween the first ŷ value at the start of the capsule and the last y
value at the end of the capsule, as illustrated in Figure 6. The
usage of an indicator function helps provide a straightforward
method to compute the residuals, since the time delays between
sampling and results are always different for each sample de-
pending on the lab turnaround time. By aligning the data using
the indicator function and capsule length, users can avoid con-
figuring messy time-varying, time-shift formulas to align the
signals, as the correct computations would be implicitly han-
dled based on the start and end times of the capsules.

Figure 6: Process quality variables are typically measured offline using lab
equipment with a time delay in the order of hours or days. The lab results are
used to bias or correct inferential model predictions. For accurate computation
of the residuals, i.e. the difference between the inferential and lab results, the
lab result timestamp must be aligned with when the sample was taken, and not
when the result was available. This re-alignment step can be facilitated using
an indicator function, 1A, where A denotes an event that a sample was taken
but results are not yet available. The points being aligned are marked with
$A.first() denoting the start of the capsule, and $A.last() denoting the
end of the capsule.

Results: The engineering team at the refinery was able to
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easily configure the correct inferential monitoring calculations
using self-service analytics methods, compared to previous at-
tempts in spreadsheets with manual timestamp alignments. The
analytics platform used establishes a direct connection to the
process historian, avoiding the need to manually retrieve data
or determine the correct historian configuration and data reso-
lution settings. Calculations are cached, allowing the user to
perform interactions like zooming, filtering and navigating be-
tween different time periods without expensive, repeated com-
putations. Hierarchical ‘asset trees’ are used to scale up the
calculations from a single inferential to multiple inferentials
refinery-wide without repeating the analysis or copy-pasting
formulas. Reporting dashboards are configured to share results
with stakeholders. These topics, and the concept of analytic
provenance [41], are discussed later in this paper.

5. Case Study 3: System identification

Our final case study focuses on the development of new
process models using system identification for the Diesel Hy-
drotreating (DHT) unit at the Burnaby Refinery. The DHT unit
is primarily responsible for using hydrogen to remove sulfur
from diesel products, taking in untreated diesel, jet fuel, and
similar components from other upstream units as feeds. The
feeds are combined, preheated, hydrotreated, and the differ-
ent desulfurized fractions are separated [42]. For controlling
such processes, the APC (Advanced Process Control) model
can be represented by a set of ‘process response curves’ for
each input-output pairing in the system, and each of the feed
products is treated as a separate input due to differing physico-
chemical properties. A new initiative at the Burnaby Refinery
involves co-processing canola oil as a renewable feedstock in
the DHT unit, as described in the organization’s quarterly fil-
ings, and annual Sustainability Report [43]. To improve DHT
control, the canola feed rate must be in incorporated into the
APC model as a feedforward variable so that the controller can
maintain product specifications by adjusting DHT reactor tem-
peratures in anticipation of varying canola feed rates by using
historical closed-loop data. The engineering team’s goals when
running this identification on canola oil feed rate was meant to
be a ‘sanity check’ on engineering judgment, aiming to obtain a
rough measurement of the canola-sulfur gain and see if the re-
sult was in line with the actual sulfur adjustments made through
manual control in the Burnaby Refinery, before performing an
actual step test that would disrupt production. The workflow
involved in system identification is summarized in Figure 7.

Case Study 3: In APC projects, to avoid MV correlations
that affect model quality, engineers typically design step tests
such that only one manipulated variable (MV) is stepped while
keeping all other MVs steady. The responses in all controlled
variables (CVs) are measured once they reach steady state; the
MV moves and CV response data are then used for system
identification, typically using regression-based methods. Per-
forming system identification using historical closed-loop data
follows a similar procedure, but MV inputs will not be inten-
tionally held constant during the measurement periods. To put
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Figure 7: Simplified workflow of the system identification proces. Existing
process data (left) are correlated to develop a mathematical model, shown as a
series of process response curves (right). The model then takes in new inputs
and generates predictions.

this in more specific terms, given historical process data con-
sisting of a single input variable u1, with a set of output vari-
ables, Y = y1, y2, · · · , yn, we wish to identify the relationship
between u1 and Y by filtering for regions where du1

dt > rmin. The
threshold, rmin, describes the smallest derivative of u1 that may
constitute a ‘step’, such that the move size in u1 is big enough to
register a reasonable response in the output variables. Data cap-
sules meeting this criterion are filtered out, but not all of these
capsules will be usable for identification, largely due to the
presence of excessive movement in other input variables. The
objective here is to decide which capsules are useful for vali-
dating engineering judgment, based on a ‘snapshot’ of variable
behaviours in that time. This selection operation is referred to
as ‘brushing’ in the realm of event-based visualization [33, 44].

Chain View isolates data
segments

Brushing necessary
capsules using checkbox

Cursors visually mark
relevant capsules

Figure 8: Due to the necessity of manual data selection rather than automatic
filtering, viewing capsules side-by-side provides an important advantage. Cap-
sules can be marked using visual markers for a more apparent visual filtering,
and are selected via the checkbox list. Brushing by such selection allows users
to easily add/remove the data they need to use.

This case study aims to run a simple system identification
exercise to obtain an estimate of the steady-state gain to confirm
engineering judgment and operational observations – the goal
is not to run a full system identification to find accurate process
dynamics, but to just estimate the process gains.

Challenges: Data cleaning is important due to noisy pro-
cess data. Using a simple derivative of u1, we can identify
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potentially useful data capsules, but the other MV inputs still
fluctuate significantly within the capsules, which will affect the
gain calculations. The capsules required some additional filtra-
tion in order to isolate the ones useful for identification. How-
ever, finding quantitative parameters that filtered the data so that
there was a sufficient number of useful capsules proved to be a
difficult task, because any threshold values chosen for simple
filtering were arbitrary. An example of this is filtering capsules
by the variances of the MVs that are not being tested. Heuris-
tic values, known as ‘typical moves’, can be used as bench-
marks for normal variable movements, but imposing an exact
filter based on the typical move is a difficult decision to justify.
As such, obtaining a useful final dataset of the data segments
was a judgment call for the control engineers involved, which
meant that the task required strong process knowledge. Manual
selection of useful capsules must be done by control engineers
and can be facilitated by a brushing interaction, where users
identify useful capsules one-by-one and select them.

Solutions: As illustrated in Figure 8, the resulting capsules
are shown in Chain View. Each capsule corresponds to a ‘step’
that can be used for identification. The steps are isolated by
imposing a threshold on the derivative of canola feed rate and
‘padding’ those points with two hours before and four hours
after them; this is to ensure the effects of co-processing on the
DHT are captured in their entirety based on process knowledge
of the time to steady state. The visualization in Figure 8 is
based on a few key variables, but variables can be added on-
the-go based on what the control engineers decide they should
look out for, to certify the validity of each step. Usable capsules
are brushed by selecting them in a checkbox list, such that the
user and collaborators can visually identify them. Steady-state
gain is calculated for each capsule using the following:

Ki j

∣∣∣
c =
∆y′i
∣∣∣
c

∆u′j
∣∣∣∣
c

(1)

Where Ki j,c

∣∣∣
c is the steady-state gain between output i and

input j over the capsule c, and ∆y′i
∣∣∣
c and ∆u′j

∣∣∣∣
c

are the steady-
state changes in the deviations of output i and input j over the
capsule c, respectively. The refinery’s APC system identifica-
tion tool is also used to perform this calculation, and the gain
estimates are compared between both methods using the Seeq
method as a sanity check.

Results: With respect to the initial goal of this case study,
this experiment was successful in using self-service analytics to
run a simple form of system identification for quickly validating
existing process knowledge without resorting to full-featured
APC tools or actual step tests. Steady-state gains obtained us-
ing simple self-service analytics methods are found to be within
about 10% to those from the relevant APC tools. Addition-
ally, such open-source tools can improve system identification
in self-service analytics by making it highly extensible and sup-
ported by the controls community, for example the Seeq SysID
toolbox [45]. By providing an extensible framework through
a software development kit, self-service analytics tools can al-
low users to extend their analyses beyond the platform’s base

functionalities.
Aside from the main goal of system identification, this case

study establishes a broader framework for ad hoc self-service
analytics, giving engineers at the Burnaby Refinery more self-
service options and familiarity in testing process hypotheses
and validating engineering intuition before making actual changes
to the APC system. Using these toolboxes, engineers at the
refinery can quickly test theories on hypothetical APC model
changes on-the-go without having to go through additional time-
consuming barriers like putting in formal requests to schedule
step tests and deploy APC changes.

6. Business outcomes and advantages

6.1. Business Impact

To qualitatively assess the time-in-motion savings and pro-
ductivity improvements from the case studies presented and
other engineering use cases, we’ve conducted verbal, semi-structured
interviews with engineers at the Burnaby Refinery involved in
the trial of self-service analytics tools to understand their expe-
riences. This open-ended, semi-structured interview approach
is inspired by the work of Kandel and colleagues [9]. We present
relevant quotes and responses below, edited for clarity:

“I was impressed by this tool and how we were able
to quickly gather information. In just minutes, we
determined that the new trip setpoint would have
resulted in possibly one spurious trip in the past ten
years. Analyzing that amount of data with spread-
sheets would take us so much longer.”

(Engineer 1, on data volume)

“I like how we are able to quickly filter data and re-
duce the time folks spend building trends for trou-
bleshooting. I’m supportive of finding ways to help
folks work more efficiently, and this looks like it
would. We all know our biggest challenge is not
having enough time in the work day to get every-
thing we want done, so this should help.”

(Engineer 2, on productivity)

“I now realize how powerful it is when we connect
it to Python, there are just so many opportunities
and possibilities, rather than just waiting for our
vendors to develop new features, which is nice, but
sometimes quite limited.”

(Engineer 3, on code integration)

“I feel comfortable using it after 2 short training
sessions because it is similar to our existing tools,
and appears to be designed by chemical engineers
for chemical engineers, unlike our more complex
unit monitoring tools, which took me hours to add
a variable to it due to the steep learning curve (and
we had 2-3 full days of training for that!).”

(Engineer 4, on user-friendliness)
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“Past incidents and investigations would have ben-
efited from this tool. I often build PI trends for
these investigations but it is tedious and limited to
time-based graphs.”

(Engineer 5, on troubleshooting)

The Burnaby Refinery’s peers and other oil and gas orga-
nizations have also reported similar insights and benefits from
their SSA approach. We summarize findings by multinational
oil and gas and petrochemical companies like Shell, Chevron,
Covestro and Sinopec below.

As reported by Shell, their organization has been transition-
ing away from traditional spreadsheet approaches for data anal-
ysis to Seeq to ‘better leverage its vast data store’ [25]. They
raise an interesting point that self-service analytics bring signif-
icant value to problems that ‘do not initially appear to be overly
complex’. As elaborated further in a ARC Digital Transforma-
tion Council webinar [46], Shell explained that many engineer-
ing problems they investigate and solve are relatively simple in
terms of data analytics needs and algorithmic techniques, espe-
cially if they already know beforehand the relevant physics and
first-principles theories to explore. The value of self-service an-
alytics, however, is that SSA tools make it significantly easier
for their engineers to test and verify multiple competing theo-
ries. In the webinar, they provided case studies to elaborate on
these comments, noting that without their deployment of SSA
tools, their subject matter experts would most likely have made
incorrect, costly assumptions in root cause analyses due to the
inability to test and verify their theories in a timely and acces-
sible manner.

The case studies herein demonstrate ad hoc and routine types
of SSA with some diagnostic troubleshooting and optimiza-
tion opportunity identification analysis. SSA also provides pre-
dictive and prescriptive types of analysis, as demonstrated by
Covestro in an application to predict heat exchanger fouling and
anticipate when equipment will need to be cleaned or serviced
so they can schedule downtime and mitigate disruption [47].

Decision support for refinery engineers requires more than
time-series sensor data alone. Operational intelligence systems
must therefore integrate a variety of data types from a variety
of data sources in order to provide more holistic decision sup-
port, i.e. sensor data from process historians, Laboratory Infor-
mation Management Systems (LIMS) data, maintenance work
order data from Enterprise Asset Management (EAM) systems,
planning and scheduling data, and operator shift logs etc. One
company that has implemented an operational intelligence sys-
tem has reported that the system contributed to significant ben-
efits in Chevron’s El Segundo refinery [48], as shown in Table
2.

Despite the lower relative percentage improvement for avail-
ability in Table 2, the absolute monetary weighted benefit is sig-
nificantly higher since the majority of operating expenditure for
a refinery is maintenance-related costs. The Sinopec Qingdao
refinery makes use of predictive analytics to improve availabil-
ity by preventing unplanned downtime with anomaly detection
[49]. Given the significance of maintenance costs and the cost
of unplanned outages, it is rational that the initial focus of refin-

Table 2: Benefits reported for Chevron’s El Segundo Refinery following im-
plantation of real-time operational intelligence system [48].

Business Improvement Category Multi-Year Average

Reduced Operating Expenses 8%

Increased Facility Utilization 8.5%

Increased Operational Availability 2.5%

Increased High Value Product Production 10.5%

Reduced Environmental Incidents 18%

Reduced OSHA Recordable Injury Rate 39%

ery analytics is placed upon anomaly detection with high-cost
rotating equipment assets, such as gas turbine generators and
compressors. However, it should be noted that issues with the
plant’s material balance can also cause unplanned shutdowns
and loss of production.

The second highest operational expenditure for a refinery is
energy cost. However, results from a survey of refiners in 2018
revealed that energy management was only ranked as the 5th

highest area with respect to benefiting from digital technologies
[50]. One possible explanation for the low ranking of energy-
related opportunities with digital technologies is that identifica-
tion of use cases for refinery plant data analysis is overly influ-
enced by the hierarchical nature of the data infrastructures, as
described herein; energy-related analysis generally requires a
non-hierarchical, cross-equipment, cross-unit perspective. An-
other potential explanation is that energy reduction and energy
losses are often a by-product of equipment related analysis.
This could be addressed by reporting the results of analysis
wins in terms of monetary gain and reduction in lost energy
opportunity. With the growing importance of energy efficiency,
perhaps analysis use case selection should be weighted more in
terms of lost energy opportunity.

6.2. Analytic Provenance

Annotations as process metadata

Worksteps store analysis 'states'

Journal notes for analysis context

Figure 9: Analytic provenance and multi-user collaboration is facilitated by
a journal or note-taking feature, allowing users to document their analytical
reasoning and thought process within the same analysis window. Data-aware
annotations can be marked using annotation capsules to highlight interesting
and relevant observations in the time series data. Application bookmarking is
achieved by recording analysis states as worksteps in the form of a clickable
hyperlink.

The concept of provenance in visual analytics [41] involves
recording the directly observable aspects of an analysis, includ-
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ing the history of data flow, visualization states and user inter-
actions, and also the non-directly observable aspects such as
user thoughts, insights and analytical reasoning throughout the
analysis lifecycle.

Provenance supports recall, which is the awareness and un-
derstanding of current and previous analysis states [41]. The
investigative questions faced by plant engineers in their day-
to-day tasks may be ambiguous and iterative in nature. In ex-
ploratory data analysis, it is common to venture into pathways
that do not validate any hypotheses nor yield any meaningful
results. As described elegantly by Pike and colleagues,

“In many analysis tasks, goals are unstable, and a
straightforward progression down a path of discov-
ery is impossible.” [34]

For example, the question “Why did the reactor feed rate
drop?” is a very high level inquiry that begins by inspecting
process data with a wide range of possible findings (e.g. instru-
mentation malfunctions, operational constraints, process upsets,
control issues etc.) that would determine subsequent analysis
steps and investigative avenues, as previously illustrated in Fig-
ure 2.

Since the engineer’s analysis goals may change as more in-
formation is discovered during the investigation process, it is
important that they keep detailed records of the investigation
workflow. Encountering certain analysis dead ends, most en-
gineers may intentionally discard the entire analysis and any
intermediate outputs, deeming them as throwaway artifacts, be-
cause the end result was not meaningful [9]. Without proper
documentation, engineers will struggle to keep track of past
analyses, and their collaborators will also be confused, lead-
ing to wasted efforts and confusion over how certain results
and conclusions were obtained. To build upon existing work,
knowledge of past explorations — what has been attempted
and justification for choosing certain approaches is important
[51, 52, 53].

To record provenance of the engineer’s insights, many self-
service analytics platforms, including Seeq, provide a note-taking
or ‘Journal’ feature that allows users to input textual notes to
document their analysis steps, integrating documentation, data-
aware annotations [54] and comments directly into the main
visualization window, as illustrated in Figure 9.

Provenance also supports collaborative communication and
presentation of insights to other stakeholders [41]. Real-world
engineering analysis is a social process that involves multiple
stakeholders in discussion, interpretation and dissemination of
results. Transferring findings from analysis to business actions
requires successful communication between technical analysts
and non-technical stakeholders [53]. In many organizations,
these engineering findings are, unfortunately, often communi-
cated using static screenshots sent through emails, memos or
PowerPoint slides, and not directly integrated with the analysis
platform.

To support these important social and collaborative interac-
tions, visualization tools should empower users to record work
steps and capture the internal state of an analysis as clickable

hyperlinks. These links can be sent to collaborators so that
they can directly observe the same analysis. This technique
is also known as view sharing via application bookmarking
[54]. Unlike static screenshots, application bookmarking pro-
vides more flexibility, allowing stakeholders to pick up an ex-
ploration where their collaborators left off, or even navigate to
other views of interest that may not have been considered in the
original analysis.

6.3. Automation and Analytics at Scale

Instead of working with individual, decontextualized pro-
cess tags, a refinery’s data and assets can be better represented
using hierarchical, contextualized models [55] known as asset
trees in Seeq or AF (Asset Framework) objects in OSISoft PI.
The integration of contextual metadata and structure in asset
trees can help engineers understand the individual data points
that comprise a specific asset [56]. Another key advantage of
implementing a hierarchical, class-like knowledge representa-
tion is the support for polymorphism across assets, which fa-
cilitates analytics tasks and allows the engineer to reuse calcu-
lations and trends as templates across different assets. These
concepts are related to objects in object-oriented programming
(OOP) or frames in artificial intelligence knowledge represen-
tation [57],

As a more concrete example, we could organize the Burn-
aby Refinery’s inferential models into an asset tree as shown
in Figure 10. The parent process units can have multiple child
inferential models, and the leaf node of each inferential con-
tains the same three-tag structure – predictions, lab results and
indicator function. The inferential monitoring calculations con-
figured for one particular inferential in Case Study 2 can then
be re-used and reapplied to all other inferential models in the
refinery since they have a similar structure. The usage of hi-
erarchical models and asset trees allows an engineer to conve-
niently scale up calculations from a single asset to plantwide
analytics.

Refinery

Inferentials and Soft Sensors

Fluidized
Catalytic Cracker

LGO T90

Predictions, ŷ
Lab Results, y

Indicator Function, 1A

· · ·

· · ·

HCC T90

Predictions, ŷ
Lab Results, y

Indicator Function, 1A

· · ·

· · ·

· · ·

Diesel
Hydrotreater

Diesel Flash

Predictions, ŷ
Lab Results, y

Indicator Function, 1A

· · ·

· · ·

Figure 10: Plantwide asset tree of refinery inferentials with two exemplary pro-
cess units, FCC (Fluidized Catalytic Cracker) and DHT (Diesel Hydrotreater
Unit), as parent nodes. Each parent node can contain one or more child in-
ferential nodes (e.g. LGO T90 or Light Gas Oil endpoint, HCC or Heavy Cat
Cracked endpoint). The leaf nodes in each inferential all have the same struc-
ture, and contain the relevant process data tags associated with that particular
inferential.
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7. Limitations

Analytics tools are not one-size-fits-all. In general, there
exists a trade-off between more advanced visualization capabil-
ities and a shorter learning curve in self-service analytics tools.
For example, certain platforms provide a trellis or small mul-
tiples [54] feature to quickly split a dataset into several sub-
sets based on one or more user-defined categories, which can
be very helpful for engineering investigations such as splitting
histograms of temperatures by month to visualize slow pro-
cess drifts over time. Likewise, more advanced visualizations
like interactive heatmaps, which have applications in visualiz-
ing high-dimensional biological data [58] and diagnosing pro-
cess control issues [59], can be difficult to configure natively
in time-series oriented tools. Users must find a delicate balance
between the tool’s complexity and utility for their intended task.

An interesting study by Bessen [60] explored the link be-
tween technology usage and industry concentration, which is
a measure of the extent of domination of firms in a particular
market. Bessen found a strong relationship between the strate-
gic usage of technology and higher organization revenues and
productivity, even more so than mergers and acquisitions or
other variables. The study also noted that productivity gains
are not shared equally amongst all firms that adopt new tech-
nology. It’s not just about purchasing the ‘best’ tools — top-
performing firms actually utilize new technology productively,
whereas their lesser competitors are not able to, and are there-
fore disadvantaged. Given the importance of data and digital
skills for sustaining organizational competitiveness, what are
the roadblocks in embracing modern, self-service analytics in
an engineering organization? Our literature review uncovered
several reasons.

• The reality is that spreadsheets are still ubiquitous in the
process industries and appeal to the general engineering
workforce [61]. In the literature, commercial BI tools are
purported to be excellent for data exploration and visual-
ization, but lack the flexibility for manipulating data and
performing computations in a transparent manner [62],
aspects which are important in engineering tasks and have
traditionally been the strength of spreadsheets. Thus, the
engineering community’s reliance on spreadsheets poses
significant friction in the adoption of modern analytics
tools and platforms.

• Furthermore, despite the limitations of spreadsheets, an
obvious spreadsheet-alternative for analytics tasks that
would be acceptable for the general engineering work-
force is notably absent [63]. Practicing engineers have
varying computer literacy skills and they require tools
that are appropriate for their tasks and abilities. Their
diverse needs are unlikely to be fulfilled by a single soft-
ware vendor [64], as casual users may find advanced tools
too complicated to learn, and power users will be frus-
trated by the limitations of simpler tools [65]. Forcing
both casual and power users on the same platform will
likely lead to failure, as these tools are not one size fits
all.

• Academic papers on process data analytics primarily fo-
cus on reporting novel algorithmic developments and ap-
plications of more advanced techniques like artificial in-
telligence (AI) and machine learning in the process in-
dustries [14], which typically falls under predictive and
prescriptive categories. However, the average refinery
engineer may not be aware of these new developments
in advanced analytics, nor have the necessary technical
skills and software platform to implement them effec-
tively [63]. Furthermore, these research papers target an
academic audience, and there is usually insufficient guid-
ance for the practitioner on how these advanced tech-
niques may be applicable to their day to day work, and
how they can integrate them within existing processes
and systems. Notably, this academic-industry gap has
been discussed by process control researchers for decades
[66, 67, 68]. In the adjacent field of machine learning, re-
searchers have also pointed out community-wide schol-
arship issues, where many authors are hyper-focused on
trying to one-up each other on contrived benchmark datasets,
instead of measuring concrete impact on real-world prob-
lems [69, 70].

• Human factors challenges in embracing modern data an-
alytics include a lack of perceived need or interest by or-
ganizational leadership [23, 64], as well as other psycho-
logical factors [21]. Senior leaders serious about analyt-
ics strategy cannot just pay lip service to digital trans-
formation by purchasing the latest trends in technology,
nor can they just participate passively by delegating work
down to middle management [11]. To drive a culture of
innovation for data analytics, organizations must develop
a coherent digitalization vision and invest in equipping
engineers with the ability to translate business opportu-
nities into meaningful analytics projects [7]. As we can
gather from Bessen’s study [60], buying new technology
will not help if organizational leadership does not know
how to deploy and use it productively.

8. Future work and conclusions

Self-service analytics provides clear benefits for refiners,
with time-in-motion savings and facilitation of reductions in
operating expenditure and lost opportunity. There are also op-
portunities to improve quality and yields. Therefore, it is vital
that refinery engineers are equipped with professional, purpose
built, SSA tools in addition to self-service functions provided
by existing spreadsheets, visualization and BI applications.

The following topics should be researched further as the use
of self-service analytics grows throughout the refining industry
and beyond,

1. The use of ungoverned spreadsheets with embedded code
in the refining industry should be researched further. In-
deed, ungoverned analysis in spreadsheets or any appli-
cation, has the potential to lead to questionable outputs,
thereby having the potential to impact operational deci-
sion making. One important subject to be considered is
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the basic human tendency to trust a seemingly intelligent
computer [71]. Programming code, whether embedded
inside spreadsheets or developed in data science applica-
tions, is becoming a more common skill amongst engi-
neers. However, Kletz et al. (1995) provided stark warn-
ing of the risks that software code poses,

Software errors are systemic, they will always
occur when the same conditions arise. As these
conditions may arise infrequently, software er-
rors can lie in wait like time bombs. [71]

Therefore, further research must be conducted to investi-
gate the risk of ungoverned, bespoke, code and the extent
to which the code has been tested. The European Spread-
sheet Risks Interest Group (EuSpRIG) was founded in
1999 to systematically investigate the topic of spread-
sheet integrity [72].

2. The process for understanding how data governance ap-
plies to the data feeds into the self-service systems has
not been fully explored and users may not be competent
in understanding the application of the tool to validate
their business rules [73]. The subsequent cleansing of
data also requires further research to ensure data cleans-
ing operations such as filtering are fully understood, for
instance, applying the wrong filter function to data from
a particular type of plant sensor may unintentionally re-
move valid data instead of signal noise. Given the high-
risk environment of hydrocarbon processing and the high
potential for catastrophic incidents, the topic of data gov-
ernance for SSA must be researched further.

3. The topic of data governance should also be extended
to include the use of artificial intelligence and the ex-
tent to which AI will replace engineering judgement and
the subject matter expertise required to perform refinery
plant analysis. It is imperative that we understand if the
use of AI could manifest as a form of ungoverned data
analytics.

4. Different types of analytics are described from a timeli-
ness perspective, however, most of these types of analy-
sis can be grouped into categories such as ‘routine’ and
‘ad hoc’. Data access patterns and user access patterns
for these two categories of analysis are different. Al-
though routine analysis lends itself more to automation,
self-service applications can be used to build the initial,
reusable analysis that can then be scheduled. However,
the extent to which the triggering and build of the anal-
ysis can be automated as part of a digital work flow re-
quires further research.

5. Since the majority of a refineries operating expenditure
costs is attributed to maintenance, it is unsurprising that
predictive analytics has been widely adopted by refinery
maintenance and reliability departments to help reduce
unplanned outages. However, the second highest operat-
ing expenditure cost is energy and the use of analytics to
help reduce energy consumption and energy losses must
be researched further.

As cautioned by other industry practitioners [26], the suc-
cessful deployment of AI and analytics in the refining and chem-
ical industries is not dependent on just tools and algorithms.
Human factors like training and culture are also critical for suc-
cess, as well as a strong understanding and domain knowledge
of refining. In this paper, we have highlighted several case stud-
ies illustrating challenges faced by refinery engineers and solu-
tions using SSA tools. We have illustrated how relatively sim-
ple analytics tasks like data collection and cleaning can be a
surprisingly time-consuming affair for engineers without effec-
tive workflows and tools. With this paper, we hope to encourage
stronger collaboration between the refining industry, analytics
providers and academia to work on tackling these real-world
issues that will lead to a measurable and concrete impact on
refinery operations. In particular, we urge further research at
the intersection of chemical engineering, data visualization and
human-computer interaction, as improvements in these areas
can have a significant impact on engineering productivity and
utility of self-service analytics tools.
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